Hostname: page-component-cc8bf7c57-hbs24 Total loading time: 0 Render date: 2024-12-11T07:54:55.907Z Has data issue: false hasContentIssue false

EFFECTS OF BACILLUS THURINGIENSIS BERLINER VAR. KURSTAKI AND DEFOLIATION BY THE GYPSY MOTH [LYMANTRIA DISPAR (L.) (LEPIDOPTERA: LYMANTRIIDAE)] ON NATIVE ARTHROPODS IN WEST VIRGINIA1

Published online by Cambridge University Press:  31 May 2012

Bradley E. Sample
Affiliation:
Division of Forestry, West Virginia University, Morgantown, West Virginia, USA 26506
Linda Butler
Affiliation:
Division of Plant and Soil Science, West Virginia University, Morgantown, West Virginia, USA 26506
Cathy Zivkovich
Affiliation:
Division of Plant and Soil Science, West Virginia University, Morgantown, West Virginia, USA 26506
Robert C. Whitmore
Affiliation:
Division of Forestry, West Virginia University, Morgantown, West Virginia, USA 26506
Richard Reardon
Affiliation:
U.S.D.A. Forest Service, Northeastern Area, State and Private Forestry, Morgantown, West Virginia, USA 26506

Abstract

Impacts of Bacillus thuringiensis var. kurstaki (Btk) and defoliation by gypsy moth [Lymantria dispar (L.)] on native, non-target arthropods were evaluated in eastern West Virginia from 1990 to 1992. Adult and larval arthropods were collected by foliage sampling and light-trapping at 24 20-ha (50-acre) plots, representing six replicates of four treatments: unsprayed, gypsy moth absent (control); unsprayed, gypsy moth present (defoliation); sprayed, gypsy moth absent; and sprayed, gypsy moth present. Pre-treatment data were collected in 1990. In May 1991, one application of Btk was made to 12 plots at a dosage of 14.4 BIU/ha (36 BIU/acre). Post-treatment data were collected in 1991 and 1992. With few exceptions, detectable effects from Btk application were restricted to Lepidoptera. Although abundance and species richness of larval and adult non-target Lepidoptera decreased at all plots between 1990 and 1992, abundance and species richness were reduced at Btk-treated plots relative to untreated plots. Richness and abundance of some larval and adult Lepidoptera declined at defoliation plots. Although the short-term (< 1 year) impacts of Btk application on non-target Lepidoptera are negative, the long-term effects (> 1 year) of reduced abundance of gypsy moth larvae may be beneficial for some native species. Although Btk application and defoliation reduce abundance of native Lepidoptera, environmental conditions such as weather may have a greater influence on population fluctuations.

Résumé

Les effets de Bacillus thuringiensis var. kurstaki (Btk) et de la défoliation par la Spongieuse [Lymantria dispar (L.)] sur les arthropodes indigènes non cibles ont été évalués dans l’est de la Virginie occidentale, de 1990 à 1992. Des adultes et des larves d’arthropodes ont été récoltés par échantillonnage du feuillage et par capture au piège lumineux sur 24 grilles échantillons de 20 ha (50 acres), donc six réplications de quatre traitements : sans arrosage, en l’absence de spongieuses (témoin), sans arrosage, en présence de spongieuses (défoliation), avec arrosage, en l’absence de spongieuses et avec arrosage, en présence de spongieuses. Des données ont été recueillies en 1990, avant les traitements. En mai 1991,12 grilles-échantillons ont reçu une application de Btk à raison de 14,4 BIU/ha (36 BIU/acre). Des données ont été recueillies après les traitements en 1991 et 1992. À quelques exceptions près, les effets décelables de l’application de Btk étaient restreints aux lépidoptères. L’abondance et la richesse en espèces des larves et des adultes des lépidoptères non cibles ont diminué dans toutes les grilles échantillons entre 1990 et 1992, mais ces variables étaient encore plus réduites dans les grilles traitées au Btk que dans les grilles non traitées. La richesse et l’abondance des larves et des adultes de certains lépidoptères ont diminué dans les grilles où il y a eu défoliation. Bien que les effets à court terme (< 1 an) d’une application de Btk sur les lépidoptères non cibles soient négatifs, les effets à long terme (> 1 an), soit la diminution de l’abondance des larves de la Spongieuse, peuvent être avantageux pour certaines espèces indigènes. L’application de Btk et la défoliation réduisent l’abondance des lépidoptères indigènes, mais les conditions du milieu, comme le climat, peuvent avoir un impact encore plus important sur les fluctuations de la population.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, E.L.P., and Kunz, T.H.. 1977. Feeding strategies of the little brown bat, Myotis lucifungus, in southern New Hampshire. Ecology 58: 775786.CrossRefGoogle Scholar
Bagley, F.M. 1984. A Recovery Plan for the Ozark Big-eared Bat and the Virginia Big-eared Bat. U.S. Fish and Wildlife Service, Region III, Twin Cities, MN. 56 pp. and appendices.Google Scholar
Beegle, C.C., and Yamamoto, T.. 1992. History of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist 124: 587616.CrossRefGoogle Scholar
Bellocq, M.I., Bendell, J.F., and Cadogan, B.L.. 1992. Effects of Bacillus thuringiensis on Sorex cinereus (masked shrew) populations, diet, and prey selection in a jack pine plantation in northern Ontario. Canadian Journal of Zoology 70: 505510.CrossRefGoogle Scholar
Black, H.L. 1974. A north temperate bat community: Structure and prey populations. Journal of Mammalogy 55: 138157.CrossRefGoogle Scholar
Boberschmidt, L., Saari, S., Sassaman, J., and Skinner, L.. 1989. Pesticide Background Statements. Vol. IV. Insecticides. U.S.D.A. Agricultural Handbook 685: 578 pp.Google Scholar
Butler, L. 1992. The community of macrolepidopterous larvae at Cooper's Rock State Forest, West Virginia: A baseline study. The Canadian Entomologist 124: 11491156.CrossRefGoogle Scholar
Butler, L., and Kondo, V.. 1991. Macrolepidopterous Moths collected by Blacklight Trap at Cooper's Rock State Forest, West Virginia: A Baseline Study. West Virginia Agriculture and Forestry Experimental Station Bulletin 705: 25 pp.Google Scholar
Butler, L., Zivkovich, C., and Sample, B.E.. 1995. Richness and Abundance of Arthropods in the Oak Canopy of West Virginia's Eastern Ridge and Valley Section during a Study of Impacts of Bacillus thuringiensis with Emphasis on Macrolepidoptera Larvae. West Virginia Agricultural Experiment Station Bulletin 711: 17 pp.Google Scholar
Cooper, R.J., Dodge, K.M., Martinat, P.J., Donahoe, S.B., and Whitmore, R.C.. 1990. Effect of diflubenzuron application on eastern deciduous forest birds. Journal of Wildlife Management 54: 486493.CrossRefGoogle Scholar
Cooper, R. J., and Whitmore, R.C.. 1990. Arthropod sampling methods in ornithology. Studies in Avian Biology 13: 2937.Google Scholar
Dalton, V.M., Brack, V. Jr., and McTeer, P.M.. 1986. Food habits of the Big-eared Bat, Plecotus townsendii virginianus in Virginia. Virginia Journal of Science 37: 248254.Google Scholar
Doane, C.C., and McManus, M.L.. 1981. The Gypsy Moth: Research Toward Integrated Pest Management. U.S.D.A. Forest Service Technical Bulletin 1584: 757 pp.Google Scholar
Dowdy, S., and Wearden, S.. 1983. Statistics for Research. John Wiley and Sons, New York, NY. 537 pp.Google Scholar
Dubois, N.R., and Lewis, F.B.. 1981. What is Bacillus thuringiensis. Journal of Arboriculture 7: 233240.Google Scholar
Feeny, P.P. 1968. Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. Journal of Insect Physiology 14: 805817.CrossRefGoogle Scholar
Feitelson, J.S., Payne, J., and Kim, L.. 1992. Bacillus thuringiensis: Insects and beyond. Biotechnology 10: 271276.Google Scholar
Flexner, J.L., Lighthart, B., and Croft, B.A.. 1986. The effects of microbial pesticides on non-target, beneficial arthropods. Agriculture, Ecosystems and Environment 16: 203254.CrossRefGoogle Scholar
Gill, S.S., Cowles, E.A., and Pietrantonio, P.V.. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology 37: 615636.CrossRefGoogle ScholarPubMed
Gottschalk, K.W. 1993. Silvicultural Guidelines for Forest Stands threatened by the Gypsy Moth. U.S.D.A. Forest Service General Technical Report NE–171: 50 pp.Google Scholar
Granett, J., Bisabri-Ershadi, B., and Hejezi, M.J.. 1983. Some parameters of benzoylphenyl urea toxicity to beet armyworms (Lepidoptera: Noctuidae). Journal of Economic Entomology 76: 399402.CrossRefGoogle Scholar
Hudson, R.H., Tucker, R.K., and Haegele, M.A.. 1984. Handbook of Toxicity of Pesticides to Wildlife. U.S. Fish and Wildlife Service Resource Publication 153: 90 pp.Google Scholar
Hurlbert, S.H. 1984. Pseudoreplication and the design of field experiments. Ecological Monograph 54: 187211.CrossRefGoogle Scholar
Jennings, D.T., and Housewart, M.W.. 1989. Sex-biased predation by web-spinning spiders (Araneae) on spruce budworm moths. Journal of Arachnology 17: 191199.Google Scholar
Julliet, J.A. 1963. A comparison of four types of traps used for capturing flying insects. Canadian Journal of Zoology 41: 219223.CrossRefGoogle Scholar
Karban, R. 1986. Interspecific competition between folivorous insects on Erigeron glaucus. Ecology 67: 10631072.CrossRefGoogle Scholar
Knight, F.B., and Heikkenen, H. J.. 1980. Principles of Forest Entomology. McGraw-Hill, New York, NY. 461 pp.Google Scholar
Kolodny-Hirsch, D.M. 1986. Evaluation of methods for sampling gypsy moth (Lepidoptera: Lymantriidae) egg-mass populations and development of sequential sampling plans. Environmental Entomology 15: 122127.CrossRefGoogle Scholar
Kunz, T.H. 1988. Methods of assessing the availability of prey to insectivorous bats. pp. 191–210 in Kunz, T.H. (Ed.), Ecological and Behavioral Methods for the Study of Bats. Smithsonian Institution Press, Washington, DC. 533 pp.Google Scholar
Lawton, J.H., and Strong, D.R. Jr., 1981. Community patterns and competition in folivorous insects. American Naturalist 118: 317338.CrossRefGoogle Scholar
Maas, W., Van Hes, R., Grosscurt, A.C., and Duel, D.H.. 1981. Benzoylphenylurea insecticides. pp. 423470in Wegler, R. (Ed.), Chemie der Phlanzenshutz und Schadlingsbekampfungsmittel. Band 6. Springer Verlag, Berlin.Google Scholar
Martinat, P.J., Coffman, C.C., Dodge, K.M., Cooper, R. J., and Whitmore, R.C.. 1988. Effect of Dimilin 25-W on the canopy arthropod community in a central Appalachian forest. Journal of Economic Entomology 81: 261267.CrossRefGoogle Scholar
Miller, J.C. 1990 a. Field assessment of the effects of a microbial pest control agent on nontarget Lepidoptera. American Entomologist 36: 135139.CrossRefGoogle Scholar
Miller, J.C. 1990 b. Effects of a microbial insecticide, Bacillus thuringiensis kurstaki, on nontarget Lepidoptera in a spruce budworm-infested forest. Journal of Research on Lepidoptera 29: 267276.CrossRefGoogle Scholar
Morris, R.F. 1960. Sampling insect populations. Annual Review of Entomology 5: 243264.CrossRefGoogle Scholar
Morton, R., Tuart, L.D., and Wardhaugh, K.G.. 1981. The analysis and standardization of light-trap catches of Heliothis armiger (Hubner) and H. punctiger Wallengren (Lepidoptera: Noctuidae). Bulletin of Entomological Research 71: 207225.CrossRefGoogle Scholar
N.R.C.C. 1976. Bacillus thuringiensis: Its Effects on Environmental Quality. National Research Council of Canada, Associate Committee on Scientific Criteria for Environmental Quality. N.R.C.C. 15385: 133 pp.Google Scholar
Price, P.W. 1984. Insect Ecology. John Wiley and Sons, New York, NY. 607 pp.Google Scholar
Rodenhouse, N.L., and Holmes, R.T.. 1992. Results of experimental and natural food reductions for breeding black-throated blue warblers. Ecology 73: 357372.CrossRefGoogle Scholar
Ross, A. 1967. Ecological aspects of the food habits of insectivorous bats. Proceedings of the Western Foundation for Vertebrate Zoology 1: 205264.Google Scholar
Rossiter, M.C., Schultz, J.C., and Baldwin, I.T.. 1988. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69: 267277.CrossRefGoogle Scholar
Sample, B.E. 1991. Effects of Dimilin on Food of the Endangered Virginia Big-eared Bat. Unpublished Ph.D. dissertation, West Virginia University, Morgantown, WV. 201 pp.Google Scholar
Sample, B.E., Butler, L., and Whitmore, R.C.. 1993 a Effects of an operational application of Dimilin on non-target insects. The Canadian Entomologist 125: 173179.CrossRefGoogle Scholar
Sample, B.E., Cooper, R.J., Greer, R.D., and Whitmore, R.C.. 1993 b. Estimation of insect biomass by length and width. American Midland Naturalist 129: 234240.CrossRefGoogle Scholar
Sample, B.E., Cooper, R.J., and Whitmore, R.C.. 1993 c. Dietary shifts among songbirds from a diflubenzuron-treated forest. Condor 95: 616624.CrossRefGoogle Scholar
Sample, B.E., and Whitmore, R.C.. 1993. Food habits of the endangered Virginia Big-eared Bat in West Virginia. Journal of Mammalogy 74: 428435.CrossRefGoogle Scholar
Schreiner, I.H., and Nafus, D.M.. 1992. Changes in moth community mediated by biological control of the dominant species. Environmental Entomology 21: 664668.CrossRefGoogle Scholar
Schultz, J.C., and Baldwin, I.T.. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217: 149151.CrossRefGoogle ScholarPubMed
Sundaram, K.M.S., and Sundaram, A.. 1992. An insect bioassay method to determine persistence of Bacillus thuringiensis var. kurstaki (B.T.K.) protein in oak foliage, following application under field conditions. Journal of Environmental Science and Health B27: 73112.CrossRefGoogle Scholar
Townes, H., and Townes, M.. 1962. Ichneumon-Flies of America North of Mexico: 3. Subfamily, Gelinae, Tribe Mesostenini. U.S. National Museum Bulletin 216: Part 3, 601 pp.Google Scholar
U.S.D.A. Forest Service. 1985. Insects of Eastern Forests. Miscellaneous Publication 1426: 608 pp.Google Scholar
U.S.D.A. Forest Service. 1989. Final Environmental Impact Statement, Appalachian Integrated Pest Management Gypsy Moth Demonstration Program. U.S.D.A. Forest Service, Northeastern Area State and Private Forestry. 401 pp.Google Scholar
U.S.D.A. Forest Service. 1990. Gypsy Moth Research and Development Program. U.S.D.A. Forest Service, Northeastern Forest Experiment Station. 29 pp.Google Scholar
U.S.D.A. Forest Service. 1991. Gypsy Moth News 25: 111. State and Private Forestry, Forest Pest Management, 5 Radnor Corporate Center, 100 Matsonford Road, Suite 200, Radnor, PA 19087.Google Scholar
U.S.D.A. Forest Service. 1992 a. Gypsy Moth News 29: 113. State and Private Forestry, Forest Pest Management, 5 Radnor Corporate Center, 100 Matsonford Road, Suite 200, Radnor, PA 19087.Google Scholar
U.S.D.A. Forest Service. 1992 b. Gypsy Moth News 30: 114. State and Private Forestry, Forest Pest Management, 5 Radnor Corporate Center, 100 Matsonford Road, Suite 200, Radnor, PA 19087.Google Scholar
Uvarov, B.P. 1931. Insects and climate. Transactions of the Entomological Society of London 79: 1247.CrossRefGoogle Scholar
Wallner, W.E., and Walton, G.S.. 1979. Host defoliation: A possible determinant of gypsy moth population quality. Annals of the Entomological Society of America 72: 6267.CrossRefGoogle Scholar
Whitmore, R.C., Cooper, R.J., and Sample, B.E. 1993. Bird fat reductions in forests treated with Dimilin. Environmental Toxicology and Chemistry 12: 20592064.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ. 718 pp.Google Scholar