Hostname: page-component-6d856f89d9-jrqft Total loading time: 0 Render date: 2024-07-16T04:10:56.932Z Has data issue: false hasContentIssue false

EFFECT OF SPRAY DROPLET SIZE AND DENSITY ON EFFICACY OF BACILLUS THURINGIENSIS BERLINER AGAINST THE SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (CLEM.) (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Nicholas J. Payne
Affiliation:
Natural Resources Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Kees van Frankenhuyzen
Affiliation:
Natural Resources Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

Because microbial insecticides based on Bacillus thuringiensis subsp. kurstaki cause temporary cessation of larval feeding at sublethal doses, we hypothesized that the delivery of a given dose in a single droplet is more efficacious than delivery of the same dose in multiple smaller droplets. We tested this hypothesis by exposing larvae of the spruce budworm, Choristoneura fumiferana (Clem.), to an LD50 of a commercial product (Dipel 8L) in combinations of droplet sizes and densities that are commonly observed on coniferous foliage after aerial application. A nominal dose of 5.2 International Units (IU) was presented to fifth-instar larvae on one, two, or four balsam fir, Abies balsamea L., needles in the form of one, two, or four droplets with diameters of 84, 66, or 52 μm, respectively. The combinations of droplet size and density were chosen to represent an increasing degree of dose dispersion. Overall mortality after a 24-h exposure was significantly reduced with increasing dose dispersion from an average of 66% when the dose was presented in one 84-μm droplet on one needle to 40% when presented in multiple droplets on several needles. Increased dose dispersion reduced the proportion of larvae that were able to ingest the full dose, presumably because of feeding inhibition caused by ingestion of sublethal droplets. In addition, mortality of fully dosed larvae declined significantly with increasing dispersion, implying a reduction in the effectiveness of the ingested dose. When compared with operational spray deposits, our results suggest that efficacy of spruce budworm sprays may be improved by increasing the proportion of needles receiving a lethal spray deposit by increasing product potency and possibly the active ingredient application rate.

Résumé

Administrés en doses sub-létales, les insecticides bactériens à base de Bacillus thuringiensis sous-esp. kurstaki entraînent l’arrêt temporaire de l’alimentation chez les larves; partant de ce principe, nous avons supposé que l’application d’une dose en une seule gouttelette est plus efficace que l’application de la même dose en une multitude de gouttelettes plus petites. Nous avons éprouvé cette hypothèse en exposant des larves de la Tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clem.) à la dose LD50 d’un produit commercial (Dipel 8L) administré sous forme de gouttelettes de tailles et densités diverses, imitant les résidus que l’on retrouve sur le feuillage des conifères après un application aérienne. Une dose de 5,2 unités internationales (IU) a été utilisée chez des larves de cinquième stade sur une, deux ou quatre aiguilles du sapin baumier, Abies balsamea, sous forme de une, deux ou quatre gouttelettes de 84, 66 ou 52 μm. Les combinaisons taille-densité des gouttelettes ont été choisies de façon à simuler un gradient ascendant de dispersion de la dose. La mortalité globale après un exposition de 24 h était plus faible aux doses dispersées : elle était de 66% en moyenne lorsque la dose était administrée à une seule aiguille en une seule gouttelette de 84 μm et de 40% en moyenne lorsque la dose était adminstrée sous forme de gouttelettes multiples à plusieurs aiguilles. L’augmentation de la dispersion de la dose entraînait une réduction de la proportion de larves capables d’ingérer toute la dose, probablement à cause d’un phénomène d’inhibition de l’alimentation occasionné par l’ingestion de gouttelettes sub-létales. En outre, la mortalité des larves qui ont reçu une dose complète diminuait en fonction d’une augmentation de la dispersion de la dose, ce qui reflète une réduction de l’efficacité de la dose ingérée. Comparativement à la mesure des résidus laissés par vaporisation commerciale, nos résultats indiquent que l’efficacité des traitement des tordeuses par vaporisation peut être améliorée en augmentant la proportion des aiguilles qui reçoivent une dose létale complète par augmentation de la puissance du produit et possiblement par augmentation du taux d’application des ingrédients actifs.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Barry, J.W., and Eckblad, R.B.. 1978. Deposition of insecticide drops on coniferous foliage. Transactions of the American Society of Agricultural Engineers 21: 438441.Google Scholar
Bravo, A., Jansens, S., and Peferoen, M.. 1992. Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. Journal of Invertebrate Pathology 60: 237246.Google Scholar
Bryant, J.E., and Yendol, W.G.. 1988. Evaluation of the influence of droplet size and density of Bacillus thuringiensis against gypsy moth larvae (Lepidoptera: Lymantriidae). Journal of Economic Entomology 81: 130134.CrossRefGoogle Scholar
Grisdale, D.G. 1984. A laboratory method for mass rearing the eastern spruce budworm, Choristoneura fumiferana. pp. 223–231 in King, E.G., and Leppla, N.C. (Eds.), Advances and Challenges in Insect Rearing. USDA Agric. Res. Service. 306 pp.Google Scholar
Himel, C.M., and Moore, A.D.. 1969. Spray droplet size in the control of spruce budworm, boll weevil, bollworm and cabbage looper. Journal of Economic Entomology 62: 916918.CrossRefGoogle Scholar
Inagaki, S., Miyasano, M., Yamamoto, M., Ohba, K., Ishiguro, T., Takeda, R., and Hayashi, Y.. 1992. Induction of antibacterial activity against Bacillus thuringiensis in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Applied Entomology and Zoology 27: 565570.Google Scholar
Lambert, M. 1987. Quantification of spray deposit in experimental and operational aerial spraying operations. pp. 125–130 in Green, G.W. (Ed.), Proceedings of Symposium on the Aerial Application of Pesticides in Forestry. NRC - Associate Committee on Agriculture and Forestry Aviation, Technical Note 18, NRC 29197: 492 pp.Google Scholar
Lüthy, P., Hofmann, C., and Jaquet, F.. 1985. Inactivation of delta-endotoxin of Bacillus thuringiensis by tannin. FEMS Microbiology Letters 28: 3133.Google Scholar
Morris, O.N. 1983. Protection of Bacillus thuringiensis from inactivation by sunlight. The Canadian Entomologist 109: 12381248.Google Scholar
Payne, N.J., Sundaram, K.M., and Helson, B.V.. 1991. Airborne permethrin and off-target deposits from an aerial ultra-low-volume silvicultural spray. Crop Protection 10: 357362.Google Scholar
Picot, J.J.C., van Vliet, M.W., and Payne, N.J.. 1989. Droplet size characteristics for insecticide and herbicide spray atomizers. Canadian Journal of Chemical Engineering 67: 752761.CrossRefGoogle Scholar
Retnakaran, A., Lauzon, H., and Fast, P.G.. 1983. Bacillus thuringiensis induced anorexia in the spruce budworm, Choristoneura fumiferana. Entomologia Experimentalis et Applicata 34: 233239.Google Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, 2nd ed. W.H. Freeman and Co., New York, NY. 776 pp.Google Scholar
Spies, A.G., and Spence, K.D.. 1985. Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study. Tissue and Cell 17: 379394.Google Scholar
van Frankenhuyzen, K. 1990 a. Development and current status of Bacillus thuringiensis for control of defoliating forest insects. Forestry Chronicle 66: 498507.CrossRefGoogle Scholar
van Frankenhuyzen, K. 1990 b. Effect of temperature and exposure time on toxicity of Bacillus thuringiensis Berliner spray deposits to spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). The Canadian Entomologist 122: 6975.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Nystrom, C.W.. 1987. Effect of temperature on mortality and recovery of spruce budworm exposed to Bacillus thuringiensis Berliner. The Canadian Entomologist 119: 941945.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Nystrom, C.W.. 1989. Residual toxicity of a high-potency formulation of Bacillus thuringiensis to spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology 82: 868872.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Payne, N.J.. 1993. Theoretical optimization of Bacillus thuringiensis Berliner for the control of eastern spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae): Estimates of lethal and sublethal dose requirements, product potency, and effective droplet sizes. The Canadian Entomologist 125: 473478.CrossRefGoogle Scholar
van Vliet, M.W., and Picot, J.J.C.. 1987. Drop spectrum characterisation for the Micronair AU4000 aerial spray atomizer. Atomization and Spray Technology 3: 123134.Google Scholar
Walton, W.L., and Prewett, W.C.. 1949. The production of sprays and mists of uniform dropsize by means of spinning disc type sprayers. Proceedings of Physics Society B 62: 341350.Google Scholar
West, R.J., Raske, A.G., Retnakaran, A., and Lim, L.J.. 1987. Efficacy of various Bacillus thuringiensis Berliner var. kurstaki formulations and dosages in the field against the Hemlock Looper, Lambdina fiscellaria fiscellaria (Guen.) (Lepidoptera: Geometridae), in Newfoundland. The Canadian Entomologist 119: 449458.Google Scholar