Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-25T12:42:03.493Z Has data issue: false hasContentIssue false

Comparing apples and oranges (and blueberries and grapes): fruit type affects development and cold susceptibility of immature Drosophila suzukii (Diptera: Drosophilidae)

Published online by Cambridge University Press:  22 June 2020

Yanira Jiménez-Padilla
Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
Laura V. Ferguson
Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada
Brent J. Sinclair*
Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
*Corresponding author. Email:


Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a cosmopolitan polyphagous pest on unripe soft-skinned fruits. We sought to determine (1) temperature treatments that could be used to kill immature D. suzukii in fruit or packaging and (2) whether development on different fruits led to differences in cold tolerance of immature D. suzukii. We reared animals from egg on a banana-based laboratory diet and diets made of apple (Malus domestica Borkhausen; Rosaceae), blueberry (Vaccinium Linnaeus; Ericaceae), cherry (Prunus avium Linnaeus; Rosaceae), grape (Vitis Linnaeus; Vitaceae), orange (Citrus × sinensis (Linnaeus) Osbeck; Rutaceae), raspberry (Rubus Linnaeus; Rosaceae), or strawberry (Fragaria × ananassa Duchesne; Rosaceae) homogenate in agar and measured development time, adult body size, and cold tolerance. Diet type had complex effects on development time; in particular, D. suzukii reared on apple-based or blueberry-based diets developed more slowly to a smaller adult body size than those on other diets. Cold exposure killed eggs and both first and second instars. Survival of 24 hours at +4 °C by feeding third instars was lowest in blueberry and cherry. Five days at +0.6 °C killed all feeding third instars; this treatment is likely sufficient for targeting D. suzukii in fruit. Two hours at −5 °C or −6 °C killed all wandering third instars and pupae; this exposure could be sufficient for sanitation of packaging.

Research Papers
© The Author(s), 2020. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


These authors contributed equally to this work.

Subject editor: Hervé Colinet


Aly, M.F.K., Kraus, D.A., and Burrack, H.J. 2016. Effects of postharvest cold storage on the development and survival of immature Drosophila suzukii (Diptera: Drosophilidae) in artificial diet and fruit. Journal of Economic Entomology, 110: 8793.Google Scholar
Asplen, M.K., Anfora, G., Biondi, A., Choi, D.S., Chu, D., Daane, al. 2015. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science, 88: 469494.CrossRefGoogle Scholar
Bing, X., Gerlach, J., Loeb, G., and Buchon, N. 2018. Nutrient-dependent impact of microbes on Drosophila suzukii development. mBio, 9: e02199e02117.Google Scholar
Canadian Food Inspection Agency. 2017. D-00–07 Phytosanitary requirements to prevent the introduction and spread of apple maggot, Rhagoletis pomonella (Walsh). Canadian Food Inspection Agency, Ottawa, Ontario, Canada.Google Scholar
Colinet, H., Larvor, V., Bical, R., and Renault, D. 2013. Dietary sugars affect cold tolerance of Drosophila melanogaster. Metabolomics, 9: 608622.CrossRefGoogle Scholar
Colinet, H. and Renault, D. 2014. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster. Comparative Biochemistry and Physiology A, 170: 614.CrossRefGoogle ScholarPubMed
Corrado, G., Alagna, F., Rocco, M., Renzone, G., Varricchio, P., Coppola, V., et al. 2012. Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biology, 12: 86.CrossRefGoogle ScholarPubMed
Coudron, T.A., Ellersieck, M.R., and Shelby, K.S. 2007. Influence of diet on long-term cold storage of the predator Podisus maculiventris (Say) (Heteroptera : Pentatomidae). Biological Control, 42: 186195.CrossRefGoogle Scholar
Demerec, M. 1965. Biology of Drosophila. Hafner, New York, New York, United States of America.Google Scholar
Henry, Y. and Colinet, H. 2018. Microbiota disruption leads to reduced cold tolerance in Drosophila flies. Science of Nature, 105: 59.CrossRefGoogle ScholarPubMed
Hulme, A.C. 1972. The proteins of fruits: their involvements as enzymes in ripening, a review. International Journal of Food Science & Technology, 7: 343371.CrossRefGoogle Scholar
Jakobs, R., Ahmadi, B., Houben, S., Gariepy, T.D., and Sinclair, B.J. 2017. Cold tolerance of third-instar Drosophila suzukii larvae. Journal of Insect Physiology, 96: 4552.CrossRefGoogle ScholarPubMed
Jakobs, R., Gariepy, T.D., and Sinclair, B.J. 2015. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. Journal of Insect Physiology, 79: 19.CrossRefGoogle Scholar
Jiménez-Padilla, Y. 2016. Effects of gut-associated yeasts on Drosophila melanogaster performance. M.Sc. Thesis. University of Western Ontario, London, Ontario, Canada. Scholar
Jiménez-Padilla, Y., Esan, E., Floate, K.D., and Sinclair, B.J. 2020. Persistence of diet effects on the Drosophila suzukii (Diptera: Drosophilidae) microbiota. The Canadian Entomologist. Scholar
Kim, M.J., Kim, J.S., Jeong, J.S., Choi, D.S., Park, J., and Kim, I. 2018. Phytosanitary cold treatment of spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae) in ‘Campbell Early’ grape. Journal of Economic Entomology, 111: 16381643.CrossRefGoogle ScholarPubMed
Koštál, V., Korbelová, J., Poupardin, R., Moos, M., and Šimek, P. 2016. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. The Journal of Experimental Biology, 219: 23582367.CrossRefGoogle ScholarPubMed
Koštál, V., Simek, P., Zahradnickova, H., Cimlova, J., and Stetina, T. 2012. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proceedings of the National Academy of Sciences of the United States of America, 109: 32703274.Google Scholar
Lee, K.P., Simpson, S.J., and Wilson, K. 2008. Dietary protein-quality influences melanization and immune function in an insect. Functional Ecology, 22: 10521061.CrossRefGoogle Scholar
Lidster, P.D., Hildebrand, P.D., Bérard, L.S., and Porritt, S.W. 1988. Commercial storage of fruits and vegetables. Agriculture Canada, Ottawa, Ontario, Canada.Google Scholar
Markow, T.A. and O’Grady, P. 2005. Drosophila: a guide to species identification and use. Academic Press, London, United Kingdom.CrossRefGoogle Scholar
Martinez-Sañudo, I., Simonato, M., Squartini, A., Mori, N., Marri, L., and Mazzon, L. 2018. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions: microbiota associated to Drosophila suzukii. Insect Science, 25: 833846.CrossRefGoogle Scholar
Matzkin, L.M., Johnson, S., Paight, C., and Markow, T.A. 2013. Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster. PLoS One, 8: e59530.CrossRefGoogle ScholarPubMed
Ontario Ministry of Agriculture, Food, and Rural Affairs. 2019. Postharvest handling and storage of berries [online]. Available from [accessed 25 April 2020].Google Scholar
Ormerod, K.G., LePine, O.K., Abbineni, P.S., Bridgeman, J.M., Coorssen, J.R., Mercier, A.J., and Tattersall, G.J. 2017. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition. Fly, 11: 153170.CrossRefGoogle ScholarPubMed
R. Development Core Team. 2017. R version 3.1.2. Available from [accessed 25 April 2020].Google Scholar
Rajamohan, A. and Sinclair, B.J. 2008. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. Journal of Insect Physiology, 54: 708718.CrossRefGoogle ScholarPubMed
Rajamohan, A. and Sinclair, B.J. 2009. Hardening trumps acclimation in improving cold tolerance of Drosophila melanogaster larvae. Physiological Entomology, 34: 217223.CrossRefGoogle Scholar
Reeve, R.M. 1956. Microscopic structure of apricot purees. Journal of Food Science, 21: 329336.CrossRefGoogle Scholar
Rendon, D., Walton, V., Tait, G., Buser, J., Lemos Souza, I., Wallingford, A., et al. 2019 Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecology and Evolution, 9: 26152628.CrossRefGoogle ScholarPubMed
Rota-Stabelli, O., Blaxter, M., and Anfora, G. 2013. Drosophila suzukii. Current Biology, 23: R8R9.CrossRefGoogle ScholarPubMed
Shreve, S.M., Yi, S.X., and Lee, R.E. 2007. Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster. Cryoletters, 28: 3337.Google Scholar
Sinclair, B.J., Ferguson, L.V., Salehipour-Shirazi, G., and MacMillan, H.A. 2013. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integrative and Comparative Biology, 53: 545556.CrossRefGoogle ScholarPubMed
Toxopeus, J., Jakobs, R., Ferguson, L.V., Gariepy, T.D., and Sinclair, B.J. 2016. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. Journal of Insect Physiology, 89: 3751.CrossRefGoogle ScholarPubMed
Vacchini, V., Gonella, E., Crotti, E., Prosdocimi, E.M., Mazzetto, F., Chouaia, B., et al. 2017 Bacterial diversity shift determined by different diets in the gut of the spotted wing fly Drosophila suzukii is primarily reflected on acetic acid bacteria. Environmental Microbiology Reports, 9: 91103.CrossRefGoogle ScholarPubMed
Zuur, A.F., Ieno, E.N., and Elphick, C.S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1: 314.CrossRefGoogle Scholar
Supplementary material: PDF

Jiménez-Padilla et al. supplementary material

Jiménez-Padilla et al. supplementary material 1

Download Jiménez-Padilla et al. supplementary material(PDF)
PDF 2.9 MB
Supplementary material: File

Jiménez-Padilla et al. supplementary material

Jiménez-Padilla et al. supplementary material 2

Download Jiménez-Padilla et al. supplementary material(File)
File 253.2 KB