Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T07:33:56.705Z Has data issue: false hasContentIssue false

BACILLUS THURINGIENSIS BERLINER AND BEAUVERIA BASSIANA (BALSAMO) VUILLIMEN FOR EUROPEAN CORN BORER CONTROL: PROGRAM FOR IMMEDIATE AND SEASON-LONG SUPPRESSION1

Published online by Cambridge University Press:  31 May 2012

L.C. Lewis
Affiliation:
Corn Insects Research Unit, USDA-ARS-MWA, R.R. 3, Box 45B, Ankeny, Iowa, USA 50021
Lori Anderson Bing
Affiliation:
Department of Entomology, Iowa State University, Ames, Iowa, USA 50011

Abstract

Combinations of Bacillus thuringiensis Berliner subspecies kurstaki and Beauveria bassiana (Balsamo) Vuillimen formulated on granules were applied separately and in combination to field corn to suppress larval populations of the European corn borer, Ostrinia nubilalis (Hübner). Research was conducted in 2 separate years. Laboratory-reared O. nubilalis eggs or larvae were placed on the plant during either the whorl stage (V6) or the pollen-shedding stage (R1) to simulate first- and second-generation O. nubilalis oviposition periods, respectively. Efficacy was determined by measuring the length of European corn borer tunnels in the corn stalk at harvest time. In the 1st year, first generation, and second generation (of 2nd year) B. thuringiensis and B. bassiana alone and in combination caused significant reductions in tunneling compared with that in the check populations. There were no significant differences in tunneling between any treatments in the second-generation study of year 1. Bacillus thuringiensis and B. bassiana were independent of each other in their suppression of insects. Tunneling by the naturally occurring second-generation larvae (year 2) was recorded to determine if B. thuringiensis and B. bassiana applied in the V6 stage persisted in the plant. Pith samples were excised from nodal plates 7–10 of the corn stalk to determine the incidence of B. bassiana. There was a significant correlation (r = −0.376) (P≤0.05) between the occurrence of B. bassiana in the corn plant and tunneling by second-generation larvae. These data indicate that B. bassiana placed in the whorl of the corn plant may provide season-long suppression of O. nubilalis.

Résumé

Des formulations de Bacillus thuringiensis Berliner, sous-espèce kurstaki et de Beauveria bassiana (Balsamo) Vuillimen sur des granules ont été utilisés séparément et en mélanges sur le maïs de champs pour supprimer les populations larvaires de la pyrale de maïs, Ostrinia nubilalis (Hübner). Les études ont eu lieu pendant 2 années distinctes. Les oeufs ou les larves d’O. nubilalis élevés au laboratoire ont été placés sur la plante pendant le stade du verticille (V6) ou pendant le stade de la chute pollinique (R1) pour simuler les périodes de ponte de la première et de la deuxième génération d’O. nubilalis. respectivement. L’efficacité a été déterminée en mesurant la longueur des galeries de la pyrale de maïs dans la tige de maïs au moment de la moisson. Pour la première année et la première génération, et pour la deuxième génération de la deuxième année, B. thuringiensis et B. bassiana seuls et en mélange ont occasionné des diminutions de formation de galeries significatives à comparer à celles de la population témoin. Aucune diminution significative en formation de galeries entre les traitements de la deuxième génération de la première année n’a eu lieu. Bacillus thuringiensis et B. bassiana ont été indépendants l’un de l’autre concernant la suppression des insectes. La formation de galeries par la deuxième génération de larves (deuxième année), qui a paru naturellement, a été étudiée pour déterminer si B. thuringiensis et B. bassiana déposés au stade V6 ont persistes dans la plante. Des échantillons de la médule ont été coupés des plaques nodales 7–10 de la tige de maïs pour déterminer la fréquence d’apparence de B. bassiana. Une corrélation significative a eu lieu (r = −0,376) (P≤0,05) entre la présence de B. bassiana dans la plante de maïs et la formation de galeries par les larves de la deuxième génération. Ces données ont suggéré que B. bassiana mis dans le verticille de la plante de maïs pourrait fournir une suppression d’O. nubilalis pendant la durée de la saison.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, K., and Lefebvre, C.. 1934. Field experiments with Beauveria bassiana (Bals.) Vuill., a fungus attacking the European corn borer. J. econ. Ent. 27: 11471157.CrossRefGoogle Scholar
Beall, G., Stirrett, G.M., and Conners, I.L.. 1939. A field experiment on the control of the European corn borer, Pyrausta nubilalis Hübn., by Beauveria bassiana Vuill. II. Sci. Agric. 19: 531534.Google Scholar
Cossentine, J.E., and Lewis, L.C.. 1984. Interactions between Vairimorpha necatrix, Vairimorpha sp., and a nuclear polyhedrosis virus from Rachiplusia ou in Agrotis ipsilon larvae. J. Invertebr. Pathol. 44: 2835.CrossRefGoogle Scholar
Doberski, J.W., and Tribe, H.T.. 1980. Isolation of entomogenous fungi from elm bark and soil with reference to ecology of Beauveria bassiana and Metarhizium anisopliae. Trans. Br. Mycol. Soc. 74: 95100.CrossRefGoogle Scholar
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 141.CrossRefGoogle Scholar
Ferron, P. 1981. Pest control by the fungi Beauveria and Metarhizium. pp. 465482in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London and New York, NY.Google Scholar
Fuxa, J.R. 1979. Interactions of the microsporidium Vairimorpha necatrix with a bacterium, virus, and fungus in Heliothis zea. J. Invertebr. Pathol. 33: 316323.CrossRefGoogle Scholar
Hallberg, G.R. 1987. The impacts of agricultural chemicals on ground water quality. Geojournal 153: 283295.CrossRefGoogle Scholar
Hsiu, C.F., Chang, Y., Kwei, C.M., Han, Y.M., Wang, H.H., Wang, L., and Liu, H.P.. 1973. Field application of Beauveria bassiana for controlling the European corn borer. Acta Ent. Sin. 16: 203206.Google Scholar
Hussey, N.W., and Tinsley, T.W.. 1981. Impressions of insect pathology in the People's Republic of China pp. 785795in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London and New York, NY.Google Scholar
Injac, M. 1979. Results of the investigation of efficiency of Bacillus thuringiensis Berliner of the granulates Bactuicide G, and Bactospein G in the control of the corn borer (Ostrinia nubilalis Hübr.). Zast. Bilja 30: 105112.Google Scholar
Langenbruch, G. 1979. Vergleich zweier Spritzgestange zur biologischen Maiszundebekampfung. Nachrichtenbl. Dtsch. Pflanzenschutzdienst. (Berl.) 31: 185189.Google Scholar
Lewis, L.C., and Cossentine, J.E.. 1986. Season long intraplant epizootics of entomopathogens, Beauveria bassiana and Nosema pyrausta, in a corn agroecosystem. Entomophaga 31: 363369.CrossRefGoogle Scholar
Lynch, R.E., Lewis, L.C., and Berry, E.C.. 1980. Application efficacy and field persistence of Bacillus thuringiensis when applied to corn for European corn borer control. J. econ. Ent. 73: 47.CrossRefGoogle Scholar
Lynch, R.E., Lewis, L.C., Berry, E.C., and Robinson, J.F.. 1977 a. European corn borer control with Bacillus thuringiensis standardized as corn borer international units. J. Invertebr. Pathol. 30: 169174.CrossRefGoogle Scholar
Lynch, R.E., Lewis, L.C., Berry, E.C., and Robinson, J.F.. 1977 b. European corn borer: Granular formulations of Bacillus thuringiensis for control. J. econ. Ent. 70: 389391.CrossRefGoogle Scholar
McVay, J.R., Gudanskas, R.T., and Harper, J.D.. 1977. Effects of Bacillus thuringiensis nuclear-polyhedrosis virus mixtures on Trichoplusia ni larvae. J. Invertebr. Pathol. 29: 367372.CrossRefGoogle Scholar
Ortega, A., Vasal, S.K., Mihm, J., and Hershey, C.. 1980. Breeding for insect resistance in maize. In Maxwell, F.G., and Jennings, P.R. (Eds.), Breeding Plants Resistant to Insects. John Wiley & Sons, New York, NY.Google Scholar
Power, P., Freed, R., Goetz, S., Reicosky, D., Smail, V.M., and Wolberg, P.. 1982. User's Guide to MSTAT (Version 3.0), a software program for the design, management, and analysis of agronomic research experiments.Google Scholar
Riba, G. 1984. Application en essais parcellaires de plein champ d'un mutant artificiel du champignon entomopathogene Beauveria bassiana [Hyphomycete] contre la pyrale du mais, Ostrinia nubilalis [Lep:Pyralidae]. Entomophaga 29: 4148.CrossRefGoogle Scholar
Ritchie, S.W., Hanway, J.J., and Benson, G.O.. 1986. How a corn plant develops. Spec. Rep. No. 48. Iowa State Univ. Sci. & Tech. Coop. Ext. Serv., Ames, IA. 21 pp.Google Scholar
Stirrett, G.M., Beall, G., and Timonin, M.. 1937. A field experiment on the control of the European corn borer, Pyrausta nubilalis Hübn., by Beauveria bassiana Vuill. Sci. Agric. 17: 587591.Google Scholar
Vakili, N.G. 1990. Biocontrol of stalk rot in corn. Proceedings of the 44th Annual Corn and Sorghum Research Conference, Chicago, IL, Dec. 1989. American Seed Trade Association, Washington, DC.Google Scholar
Williams, W.M., Holden, P.W., Parsons, D.W., and Lorber, M.N.. 1988. Pesticides in ground water data base: 1988 Interim Report. U.S. Environmental Protection Agency, Office of Pesticide Programs, Environmental Fate and Groundwater Branch.Google Scholar
York, G.T. 1958. Field tests with the fungus Beauveria sp. for control of the European corn borer. Iowa State J. Sci. 33: 123129.Google Scholar