Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-9m8n8 Total loading time: 0.291 Render date: 2022-10-01T08:14:50.626Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

A RESTRICTION OF EUCLID

Part of: Game theory

Published online by Cambridge University Press:  12 June 2012

GRANT CAIRNS*
Affiliation:
Department of Mathematics and Statistics, La Trobe University, Melbourne 3086, Australia (email: G.Cairns@latrobe.edu.au)
NHAN BAO HO
Affiliation:
Department of Mathematics and Statistics, La Trobe University, Melbourne 3086, Australia (email: nbho@students.latrobe.edu.au, honhanbao@yahoo.com)
*
For correspondence; e-mail: G.Cairns@latrobe.edu.au
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Euclid is a well-known two-player impartial combinatorial game. A position in Euclid is a pair of positive integers and the players move alternately by subtracting a positive integer multiple of one of the integers from the other integer without making the result negative. The player who makes the last move wins. There is a variation of Euclid due to Grossman in which the game stops when the two entries are equal. We examine a further variation which we called M-Euclid where the game stops when one of the entries is a positive integer multiple of the other. We solve the Sprague–Grundy function for M-Euclid and compare the Sprague–Grundy functions of the three games.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Cairns, G. and Ho, N. B., ‘Ultimately bipartite subtraction games’, Australas. J. Combin. 48 (2010), 213220.Google Scholar
[2]Cairns, G. and Ho, N. B., ‘Min, a combinatorial game having a connection with prime numbers’, Integers 10 (2010), 765770.CrossRefGoogle Scholar
[3]Cairns, G. and Ho, N. B., ‘Some remarks on End-Nim’, Int. J. Comb. 2011 (2011), Art. ID 824742, 9 pp.Google Scholar
[4]Cairns, G., Ho, N. B. and Lengyel, T., ‘The Sprague–Grundy function of the real game Euclid’, Discrete Math. 311 (2011), 457462.CrossRefGoogle Scholar
[5]Cole, A. J. and Davie, A. J. T., ‘A game based on the Euclidean algorithm and a winning strategy for it’, Math. Gaz. 53 (1969), 354357.CrossRefGoogle Scholar
[6]Grossman, J. W., ‘A nim-type game, problem #1537’, Math. Mag. 70 (1997), 382.Google Scholar
[7]Nivasch, G., ‘The Sprague–Grundy function of the game Euclid’, Discrete Math. 306(21) (2006), 27982800.CrossRefGoogle Scholar
You have Access
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A RESTRICTION OF EUCLID
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A RESTRICTION OF EUCLID
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A RESTRICTION OF EUCLID
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *