Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T19:20:06.655Z Has data issue: false hasContentIssue false

Remarks on James's distortion theorems

Published online by Cambridge University Press:  17 April 2009

Patrick N. Dowling
Affiliation:
Department of Mathematics and StatisticsMiami UniversityOxford OH 45056United States of America e-mail: dowlinpn@muohio.edu
Narcisse Randrianantoanina
Affiliation:
Department of Mathematics and StatisticsMiami UniversityOxford OH 45056United States of America e-mail: randrin@muohio.edu
Barry Turett
Affiliation:
Department of Mathematical SciencesOakland UniversityRochester MI 48309United States of Americaturett@vela.acs.oaklad.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If a Banach space X contains a complemented subspace isomorphic to c0 (respectively, ℓ1), then X contains complemented almost isometric copies of c0 (respectively, ℓ1). If a Banach space X is such that X* contains a subspace isomorphic to L1[0, 1] (respectively, ℓ), then X* contains almost isometric copies of L1[0, 1] (respectively, ℓ).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Diestel, J., Sequences and series in Banach spaces, Graduate Texts in Mathematics 92 (Springer-Verlag, New York, 1984).CrossRefGoogle Scholar
[2]Hudzik, H. and Mastylo, M., ‘Almost isometric copies of ℓ in some Banach spaces’, Proc. Amer. Math. Soc. 119 (1993), 209215.Google Scholar
[3]James, R.C., ‘Uniformly non-square Banach spaces’, Ann. of Math. 80 (1964), 542550.CrossRefGoogle Scholar
[4]Lindenstrauss, J. and Pelczyński, A., ‘Contributions to the theory of the classical Banach spaces’, J. Funct. Anal. 8 (1971), 225249.CrossRefGoogle Scholar
[5]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I. Sequence spaces, Ergebnisse der Mathematik und Ihrer Grenzgebiete 92 (Springer-Verlag, Berlin, Heidelberg, New York, 1977).Google Scholar
[6]Partington, J.R., ‘Subspaces of certain Banach sequence spaces’, Bull. London Math. Soc. 13 (1981), 162166.CrossRefGoogle Scholar
[7]Sobczyk, A., ‘Projection of the space m on its subspace c 0’, Bull. Amer. Math. Soc. 47 (1941), 938947.CrossRefGoogle Scholar