Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-s4m2s Total loading time: 0.19 Render date: 2021-10-21T00:17:54.451Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

PRIMITIVE SUBGROUPS AND PST-GROUPS

Published online by Cambridge University Press:  18 July 2013

A. BALLESTER-BOLINCHES
Affiliation:
Departament d’Àlgebra, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain email adolfo.ballester@uv.esresteban@uv.es
J. C. BEIDLEMAN*
Affiliation:
Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA
R. ESTEBAN-ROMERO
Affiliation:
Departament d’Àlgebra, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain email adolfo.ballester@uv.esresteban@uv.es
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

All groups considered in this paper are finite. A subgroup $H$ of a group $G$ is called a primitive subgroup if it is a proper subgroup in the intersection of all subgroups of $G$ containing $H$ as a proper subgroup. He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28(1) (2013), 55–62] proved that every primitive subgroup of $G$ has index a power of a prime if and only if $G/ \Phi (G)$ is a solvable PST-group. Let $\mathfrak{X}$ denote the class of groups $G$ all of whose primitive subgroups have prime power index. It is established here that a group $G$ is a solvable PST-group if and only if every subgroup of $G$ is an $\mathfrak{X}$-group.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Agrawal, R. K., ‘Finite groups whose subnormal subgroups permute with all Sylow subgroups’, Proc. Amer. Math. Soc. 47 (1975), 7783.CrossRefGoogle Scholar
Asaad, M., Ballester-Bolinches, A. and Esteban-Romero, R., Products of Finite Groups, de Gruyter Expositions in Mathematics, 53 (Walter de Gruyter, Berlin, 2010).Google Scholar
Ballester-Bolinches, A., Beidleman, J. C. and Esteban-Romero, R., ‘On some classes of supersoluble groups’, J. Algebra 312 (1) (2007), 445454.CrossRefGoogle Scholar
Ballester-Bolinches, A., Esteban-Romero, R. and Pedraza-Aguilera, M. C., ‘On a class of $p$-soluble groups’, Algebra Colloq. 12 (2) (2005), 263267.CrossRefGoogle Scholar
Bray, H. G., Deskins, W. E., Johnson, D., Humphreys, J. F., Puttaswamaiah, B. M., Venzke, P. and Walls, G. L., Between Nilpotent and Solvable (ed. Weinstein, M.) (Polygonal, Washington, NJ, 1982).Google Scholar
Guo, W., Shum, K. P. and Skiba, A., ‘On primitive subgroups of finite groups’, Indian J. Pure Appl. Math. 37 (6) (2006), 369376.Google Scholar
He, X., Qiao, S. and Wang, Y., ‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28 (1) (2013), 5562.CrossRefGoogle Scholar
Holmes, C. V., ‘Classroom notes: a characterization of finite nilpotent groups’, Amer. Math. Monthly 73 (10) (1966), 11131114.CrossRefGoogle Scholar
Humphreys, J. F., ‘On groups satisfying the converse of Lagrange’s theorem’, Proc. Cambridge Philos. Soc. 75 (1974), 2532.CrossRefGoogle Scholar
Johnson, D. L., ‘A note on supersoluble groups’, Canad. J. Math. 23 (1971), 562564.CrossRefGoogle Scholar
Ore, O., ‘Contributions to the theory of groups of finite order’, Duke Math. J. 5 (2) (1939), 431460.CrossRefGoogle Scholar
Ragland, M. F., ‘Generalizations of groups in which normality is transitive’, Comm. Algebra 35 (10) (2007), 32423252.CrossRefGoogle Scholar
Robinson, D. J. S., A Course in the Theory of Groups, 2nd edn, Graduate Texts in Mathematics, 80 (Springer, New York, 1996).CrossRefGoogle Scholar
van der Waall, R. W. and Fransman, A., ‘On products of groups for which normality is a transitive relation on their Frattini factor groups’, Quaest. Math. 19 (1–2) (1996), 5982.CrossRefGoogle Scholar
Zappa, G., ‘Remark on a recent paper of O. Ore’, Duke Math. J. 6 (1940), 511512.CrossRefGoogle Scholar
You have Access
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

PRIMITIVE SUBGROUPS AND PST-GROUPS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

PRIMITIVE SUBGROUPS AND PST-GROUPS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

PRIMITIVE SUBGROUPS AND PST-GROUPS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *