Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-11T18:10:36.499Z Has data issue: false hasContentIssue false

On the integers represented by x4y4

Published online by Cambridge University Press:  17 April 2009

Andrzej Dąbrowski
Affiliation:
Institute of Mathematics, University of Szczecin, ul. Wielkpolska 15, 70–451 Szczecin, Poland, e-mail: dabrowski@sus.univ.szczecin.pl
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p be a prime number ≥ 5, and n a positive integer > 1. This note is concerned with the diophantine equation x4y4 = nzp. We prove that, under certain conditions on n, this equation has no non-trivial solution in Z if pC(n), where C(n) is an effective constant.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Darmon, H., ‘The equation x 4y 4 = z p’, C. R. Math. Rep. Acad. Sci. Canada 15 (1993), 286290.Google Scholar
[2]Diamond, F., ‘On deformation rings and Hecke rings’, Ann. of Math. 144 (1996), 137166.CrossRefGoogle Scholar
[3]Ivorra, W., ‘Courbes elliptiques sur Q, ayant un point d'ordre 2 rationnel sur Q, de conducteur 2Np’, Dissertationes Math. 429 (2004), 55pp.CrossRefGoogle Scholar
[4]Kraus, A., ‘Majorations effectives pour l'équation de Fermat généralisée’, Canad. J. Math. 49 (1997), 11391161.CrossRefGoogle Scholar
[5]Kraus, A., ‘Détermination du poids et du conducteur associé aux représentations des points de p-torsion d'une courbe elliptique’, Dissertationes Math. 364 (1997), 39pp.Google Scholar
[6]Mazur, B., ‘Rational isogenies of prime degree’, Invent. Math. 44 (1978), 129162.CrossRefGoogle Scholar
[7]Merel, L., ‘Arithmetic of elliptic curves and diophantine equations’, J. Théor. Nombres Bordeaux 11 (1999), 173200.CrossRefGoogle Scholar
[8]Papadopoulos, I., ‘Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3’, J. Number Theory 44 (1993), 119152.CrossRefGoogle Scholar
[9]Ribet, K., ‘On modular representations of Gal(Q/Q) arising from modular forms’, Invent. Math. 100 (1990), 431476.CrossRefGoogle Scholar
[10]Serre, J.-P., ‘Sur les représentations modulaires de degré 2 de Gal(Q/Q)’, Duke Math. J. 54 (1987), 179230.CrossRefGoogle Scholar
[11]Wiles, A., ‘Modular elliptic curves and Fermat's Last Theorem’, Ann. of Math. 141 (1995), 443551.CrossRefGoogle Scholar