Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T23:57:16.729Z Has data issue: false hasContentIssue false

On the cohomology of extensions by a Heisenberg Lie algebra

Published online by Cambridge University Press:  17 April 2009

Hannes Pouseele
Affiliation:
Katholieke Universiteit Leuven (KULAK), Etienne Sabbelaan 53, 8500 Kortrijk, Belgium, e-mail: hannes.pouseele@kulak.ac.be
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article describes the cohomology spaces of any Lie algebra containing a Lie algebra of Heisenberg type (whose cohomology was studied by Santharoubane) as an ideal of codimension 1. For instance, the twisted standard filiform Lie algebras are of this kind. We give an explicit formula for the Betti numbers of this Lie algebra, and use this to describe new families of algebras whose Betti numbers do not behave unimodally.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Armstrong, G.F., ‘Unimodal Betti numbers for a class of nilpotent Lie algebras’, Comm. Algebra 25 (1997), 18931915.CrossRefGoogle Scholar
[2]Armstrong, G.F., Cairns, G. and Jessup, B., ‘Explicit Betti numbers for a family of nilpotent Lie algebras’, Proc. Amer. Math. Soc. 125 (1997), 381385.CrossRefGoogle Scholar
[3]Armstrong, G.F. and Sigg, S., ‘On the cohomology of a class of nilpotent Lie algebras’, Bull. Austral. Math. Soc. 54 (1996), 517527.CrossRefGoogle Scholar
[4]Dixmier, J., ‘Cohomologie des algèbres de Lie nilpotentes’, Acta Sci. Math. 16 (1955), 246250.Google Scholar
[5]Lane, S. Mac, Homology, Die Grundlehren der Math. Wissenschaften 114 (Springer-Verlag, Berlin, Heidelberg, New York, 1975).Google Scholar
[6]Santharoubane, L.J., ‘Cohomology of Heisenberg Lie algebras’, Proc. Amer. Math. Soc. 87 (1983), 2328.CrossRefGoogle Scholar
[7]Tirao, P., ‘A refinement of the toral rank conjecture for 2-step nilpotent Lie algebras’, Proc. Amer. Math. Soc. 128 (2000), 28752878.CrossRefGoogle Scholar
[8]Wells, R.O., Differential analysis on complex manifolds, Graduate texts in mathematics 65 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).CrossRefGoogle Scholar