Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T13:18:09.048Z Has data issue: false hasContentIssue false

On compact group extension of Bernoulli shifts

Published online by Cambridge University Press:  17 April 2009

Youngho Ahn
Affiliation:
Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea, e-mail: ahn@euclid.kaist.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ρ : G →  (H) be an irreducible unitary representation of a compact group G where  (H) is a set of unitary operators of finite dimensional Hilbert space H. For the (p1, , PL)-Bernoulli shift, the solvability of ρ(φ(x)) g (Tx) = g (x) is investigated, where φ(x) is a step function.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

REFERENCES

[1]Ahn, Y. and Choe, G.H., ‘Spectral types of skewed Bernoulli shift’, Proc. Amer. Math. Soc 128 (2000), 503510.CrossRefGoogle Scholar
[2]Choe, G.H., Hamachi, T. and Nakada, H., ‘Skew product and mod 2 normal numbers’, (preprint).Google Scholar
[3]Conze, J.P., ‘Remarques sur les transformations cylindriques et les equations fonctionnelles’, Séminaire de Probabilité I (Univ. Rennes, Rennes, France 1976).Google Scholar
[4]Derrien, J.-M., ‘Critéres d'ergodicité de cocycles en escalier. Exemples’, C.R. Acad. Sci. Paris Ser. I Math 316 (1993), 7376.Google Scholar
[5]Hewitt, E. and Ross, K., Abstract Harmonic analysis I, II (Springer-Verlag, Berlin, Heidelber, New York, 1963, 1970).Google Scholar
[6]Merrill, K.D., ‘Cohomology of step functions under irrational rotations’, Israel J. Math 52 (1985), 320340.CrossRefGoogle Scholar
[7]Parry, W., ‘A Cocycle equation for shift’, Contemp. Math 135 (1992), 327333.CrossRefGoogle Scholar
[8]Rudin, W., Real and complex analysis (McGraw-Hill, New York, 1987).Google Scholar
[9]Rudolph, D.J., ‘Classifying the isometric extensions of a Bernoulli shift’, J. Analyse Math 34 (1978), 3660.CrossRefGoogle Scholar
[10]Veech, W.A., ‘Strict ergodicity of uniform distribution and Kronecker-Weyl theorem mod 2’, Tran. Amer. Math. Soc 140 (1969), 133.Google Scholar
[11]Walters, P., An introduction to Ergodic theory (Springer-Verlag, Berlin, Heidelberg, New York, 1982).CrossRefGoogle Scholar