Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T07:20:45.131Z Has data issue: false hasContentIssue false

A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION

Published online by Cambridge University Press:  09 October 2023

DEKE LI*
Affiliation:
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China
QINGXUAN WANG
Affiliation:
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China e-mail: wangqx@zjnu.edu.cn

Abstract

We consider the two-dimensional minimisation problem for $\inf \{ E_a(\varphi ):\varphi \in H^1(\mathbb {R}^2)\ \text {and}\ \|\varphi \|_2^2=1\}$, where the energy functional $ E_a(\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\varphi ):=\tfrac 12\int _{\mathbb {R}^2}|\nabla \varphi |^2\,dx-\tfrac 14a\int _{\mathbb {R}^2}|\varphi |^4\,dx+\tfrac 16a^2\int _{\mathbb {R}^2}|\varphi |^6\,dx$. We study the existence and asymptotic behaviour of the ground state. The ground state $\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\lVert Q\rVert }^2_2$, where Q is the unique positive radial solution of $-\Delta u+ u-u^3=0$ in $\mathbb {R}^2$. We show the optimal vanishing rate $\int _{\mathbb {R}^2}|\nabla \varphi _{a}|^2\,dx\sim (a-a_*)$ as $a\searrow a_*$ and obtain the limit profile.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Qingxuan Wang was partially supported by the NSFC 11801519.

References

Carles, R. and Sparber, C., ‘Orbital stability vs. scattering in the cubic-quintic Schrödinger equation’, Rev. Math. Phys. 33 (2021), Article no. 2150004.CrossRefGoogle Scholar
Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10 (New York University Courant Institute of Mathematical Sciences, New York, 2003).CrossRefGoogle Scholar
Deng, Y., Guo, Y. and Lu, L., ‘Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations’, J. Math. Phys. 59 (2018), Article no. 011503.CrossRefGoogle Scholar
Desyatnikov, A., Maimistov, A. and Malomed, B., ‘Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity’, Phys. Rev. E 61 (2000), 31073113.CrossRefGoogle Scholar
Guo, Y. and Seiringer, R., ‘On the mass concentration for Bose–Einstein condensation with attractive interactions’, Lett. Math. Phys. 104 (2014), 141156.CrossRefGoogle Scholar
Guo, Y., Wang, Z., Zeng, X. and Zhou, H., ‘Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials’, Nonlinearity 31 (2018), 957979.CrossRefGoogle Scholar
Guo, Y., Zeng, X. and Zhou, H., ‘Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials’, Ann. Inst. H. Pioncaré Anal. Non Linéaire 33 (2016), 809828.Google Scholar
Hmidi, T. and Keraani, S., ‘Blowup theory for the critical nonlinear Schrödinger equations revisited’, Int. Math. Res. Not. IMRN 46 (2005), 28152828.CrossRefGoogle Scholar
Killip, R., Oh, T., Pocovnicu, O. and Visan, M., ‘Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on ${\mathbb{R}}^3$ ’, Arch. Ration. Mech. Anal. 225 (2017), 469548.CrossRefGoogle Scholar
Killip, R., Rowan, M., Murphy, J. and Visan, M., ‘The initial value problem for the cubic-quintic NLS with nonvanishing boundary conditions’, SIAM J. Math. Anal. 50 (2018), 26812739.CrossRefGoogle Scholar
Lewin, M. and Nodari, S. R., ‘The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, nondegeneracy and applications’, Calc. Var. Partial Differential Equations 59 (2020), Article no. 197.CrossRefGoogle Scholar
Lions, P. L., ‘The concentration-compactness principle in the calculus of variations. The locally compact case. Part I’, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109149.CrossRefGoogle Scholar
Malomed, B., ‘Vortex solitons: old results and new perspectives’, Phys. D 399 (2019), 108137.CrossRefGoogle Scholar
Merler, F. and Tsutsumi, Y., ‘ ${L}^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with the critical power nonlinearity’, J. Differential Equations 84 (1990), 205214.CrossRefGoogle Scholar
Pushkarov, K. I., Pushkarov, D. I. and Tomov, I. V., ‘Self-action of light beams in nonlinear media: soliton solutions’, Opt. Quantum Electron. 11 (1979), 471478.CrossRefGoogle Scholar
Soave, N., ‘Normalized ground states for the NLS equation with combined nonlinearities’, J. Differential Equations 269 (2020), 69416987.CrossRefGoogle Scholar
Soave, N., ‘Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case’, J. Funct. Anal. 279 (2020), Article no. 108610.CrossRefGoogle Scholar
Tao, T., Visan, M. and Zhang, X., ‘The nonlinear Schrödinger equation with combined power-type nonlinearities’, Comm. Partial Differential Equations 32 (2007), 12811343.CrossRefGoogle Scholar
Wang, Q. and Feng, B., ‘On a parameter-stability for normal ground states of two-dimensional cubic-quintic nonlinear Schrödinger equations’, Z. Angew. Math. Phys. 73 (2022), 117.CrossRefGoogle Scholar
Weinstein, M. I., ‘Nonlinear Schrödinger equations and sharp interpolations estimates’, Comm. Math. Phys. 87 (1983), 567576.CrossRefGoogle Scholar