Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T22:48:17.498Z Has data issue: false hasContentIssue false

Implicit vector equilibrium problems via nonlinear scalarisation

Published online by Cambridge University Press:  17 April 2009

Jun Li
Affiliation:
School of Mathematics and Information, China West Normal University, Nanchong, Sichuan 637002, Peoples Republic of China
Nan-Jing Huang
Affiliation:
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, Peoples Republic of China, e-mail: nanjinghuang@hotmail.com, njhuang@scu.edu.cn
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to introduce a nonlinear scalarisation function for solving a class of implicit vector equilibrium problems. We prove a scalarisation lemma to show the relation between the implicit vector equilibrium problem and the nonlinear scalarisation function. Then we derive some new existence theorems for solutions of implicit vector equilibrium problems, using the scalarisation lemma and the FKKM theorem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Ansari, Q.H., Schaible, S. and Yao, J.C., ‘The system of generalized vector equilibrium problems with applications’, J. Global Optim. 22 (2002), 316.CrossRefGoogle Scholar
[2]Ansari, Q.H. and Yao, J.C., ‘An existence result for generalized vector equilibrium problem’, Appl. Math. Lett. 12 (1999), 5356.CrossRefGoogle Scholar
[3]Behera, A. and Nayak, L., ‘On nonlinear variational-type inequality problem’, Indian J. Pure Appl. Math. 30 (1999), 911923.Google Scholar
[4]Bianchi, M., Hadjisavvas, N. and Schaible, S., ‘Vector equilibrium problems with generalized monotone bifunctions’, J. Optim. Theory Appl. 92 (1997), 527542.CrossRefGoogle Scholar
[5]Bianchi, M. and Schaible, S., ‘Generalized monotone bifunctions and equilibrium problems’, J. Optim. Theory Appl. 90 (1996), 3142.CrossRefGoogle Scholar
[6]Blum, E. and Oettli, W., ‘From optimization and variational inequalities to equilibrium problems’, The Math. Student 63 (1994), 123145.Google Scholar
[7]Chen, G.Y. and Chen, G.M., Vector variational inequality and vector optimization, Lecture Notes in Econ. and Math. Systems 285 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 408416.Google Scholar
[8]Chen, G.Y. and Craven, B.D., ‘Approximate dual and approximate vector variational inequality for multiobjective optimization’, J. Austral. Math. Soc. Ser. A 47 (1989), 418423.Google Scholar
[9]Chen, G.Y. and Hou, S.H., ‘Existence of solution for vector variational inequalities’, in Vector Variational Inequalities and Vector Equilibria, (Giannessi, F., Editor), Nonconvex Optim. Appl. 38 (Kluwer Academic Publishers, Dordrecht, 2000), pp. 7386.CrossRefGoogle Scholar
[10]Chen, G.Y. and Yang, Y.Q., ‘Characterizations of variable domination structures via nonlinear scalarization’, J. Optim. Theory Appl. 112 (2002), 97110.CrossRefGoogle Scholar
[11]Fan, K., ‘A generalization of Tychonoff's fixed point theorem’, Math. Ann. 142 (1961), 305310.Google Scholar
[12]Gerth, C. and Weidner, P., ‘Nonconvex separation theorems and some applications in vector optimization’, J. Optim. Theory Appl. 67 (1990), 297320.CrossRefGoogle Scholar
[13]Giannessi, F. (Editor), Vector variational inequalities and vector equilibria, Nonconvex Optimization and its Applications 38 (Kluwer Academic Publishers, Dordrecht, 2000).CrossRefGoogle Scholar
[14]Goh, C.J. and Yang, Y.Q., ‘Scalarization methods for vector variational inequality’, in Vector Variational Inequalities and Vector Equilibria, (Giannessi, F., Editor), Nonconvex Optim. Appl. 38 (Kluwer Academic Publishers, Dordrecht, 2000), pp. 217232.CrossRefGoogle Scholar
[15]Gong, X.H., ‘Efficiency and Henig efficiency for vector equilibrium problems’, J. Optim. Theory Appl. 108 (2001), 139154.CrossRefGoogle Scholar
[16]Göpfert, A., Riahi, H., Tammer, Chr. and Zalinescu, C., Variational methods in partially ordered spaces (Springer-Verlag, New York, 2003).Google Scholar
[17]Hadjisavvas, N. and Schaible, S., ‘From scalar to vector equilibrium problems in the quasimonotone case’, J. Optim. Theory Appl. 96 (1998), 297309.CrossRefGoogle Scholar
[18]Huang, N.J., Li, J. and Thompson, H.B., ‘Implicit vector equilibrium problems with applications Math. Comput. Modelling 37 (2003), 13431356’.CrossRefGoogle Scholar
[19]Konnov, I. V. and Schaible, S., Duality for equilibrium problems under generalized monotonicityJ. Optim. Theory Appl. 104 (2000), 395408.CrossRefGoogle Scholar
[20]Konnov, I.V. and Yao, J.C., ‘Existence of solutions for generalized vector equilibrium problems’, J. Math. Anal. Appl. 233 (1999), 328335.CrossRefGoogle Scholar
[21]Li, J., Huang, N.J. and Kim, J.K., ‘On implicit vector equilibrium problems’, J. Math. Anal. Appl. 283 (2003), 501512.CrossRefGoogle Scholar
[22]Siddiqi, A.H., Ansari, Q.H. and Khaliq, A., ‘On vector variational inequalities’, J. Optim. Theory Appl. 84 (1995), 171180.Google Scholar
[23]Wu, Y.N., ‘Existence and convergence of solutions for vector equilibrium problems’, Adv. Nonlinear Var. Inequal. 6 (2003), 4958.Google Scholar