Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T10:12:01.977Z Has data issue: false hasContentIssue false

GEOMETRIC CHARACTERIZATION OF HERMITIAN ALGEBRAS WITH CONTINUOUS INVERSION

Published online by Cambridge University Press:  02 October 2009

DANIEL BELTIŢĂ*
Affiliation:
Institute of Mathematics, ‘Simion Stoilow’ of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania (email: Daniel.Beltita@imar.ro)
KARL-HERMANN NEEB
Affiliation:
Department of Mathematics, Darmstadt University of Technology, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany (email: neeb@mathematik.tu-darmstadt.de)
*
For correspondence; e-mail: Daniel.Beltita@imar.ro
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A hermitian algebra is a unital associative ℂ-algebra endowed with an involution such that the spectra of self-adjoint elements are contained in ℝ. In the case of an algebra 𝒜 endowed with a Mackey-complete, locally convex topology such that the set of invertible elements is open and the inversion mapping is continuous, we construct the smooth structures on the appropriate versions of flag manifolds. Then we prove that if such a locally convex algebra 𝒜 is endowed with a continuous involution, then it is a hermitian algebra if and only if the natural action of all unitary groups Un(𝒜) on each flag manifold is transitive.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

References

[1]Beltiţă, D., Smooth Homogeneous Structures in Operator Theory, Monographs and Surveys in Pure and Applied Mathematics, 137 (Chapman and Hall/CRC Press, Boca Raton, FL, 2006).Google Scholar
[2]Beltiţă, D. and Galé, J. E., ‘On complex infinite-dimensional Grassmann manifolds’, Complex Anal. Oper. Theory to appear.Google Scholar
[3]Beltiţă, D. and Neeb, K.-H., ‘Finite-dimensional Lie subalgebras of algebras with continuous inversion’, Studia Math. 185 (2008), 249262.CrossRefGoogle Scholar
[4]Beltiţă, D. and Ratiu, T. S., ‘Geometric representation theory for unitary groups of operator algebras’, Adv. Math. 208 (2007), 299317.CrossRefGoogle Scholar
[5]Bertram, W. and Neeb, K.-H., ‘Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra’, J. Algebra 277 (2004), 474519.CrossRefGoogle Scholar
[6]Bertram, W. and Neeb, K.-H., ‘Projective completions of Jordan pairs. II. Manifold structures and symmetric spaces’, Geom. Dedicata 112 (2005), 73113.CrossRefGoogle Scholar
[7]Biller, H., ‘Continuous inverse algebras with involution’, Forum Math. to appear.Google Scholar
[8]Dupré, M. J. and Glazebrook, J. F., ‘Infinite dimensional manifold structures on principal bundles’, J. Lie Theory 10 (2000), 359373.Google Scholar
[9]Dupré, M. J. and Glazebrook, J. F., ‘The Stiefel bundle of a Banach algebra’, Integral Equations Operator Theory 41 (2001), 264287.CrossRefGoogle Scholar
[10]Fendler, G., Gröchenig, K. and Leinert, M., ‘Symmetry of weighted L 1-algebras and the GRS-condition’, Bull. London Math. Soc. 38 (2006), 625635.CrossRefGoogle Scholar
[11]Glöckner, H., ‘Algebras whose groups of units are Lie groups’, Studia Math. 153 (2002), 147177.CrossRefGoogle Scholar
[12]Glöckner, H. and Neeb, K.-H., Infinite-dimensional Lie Groups, Springer, 2009, in preparation.CrossRefGoogle Scholar
[13]Köthe, G., Topological Vector Spaces I, Grundlehren der Mathematischen Wissenschaften, 159 (Springer, Berlin, 1969).Google Scholar
[14]Kugler, W., ‘On the symmetry of generalized L 1-algebras’, Math. Z. 168 (1979), 241262.CrossRefGoogle Scholar
[15]Leptin, H., ‘Symmetrie in Banachschen Algebren’, Arch. Math. (Basel) 27 (1976), 394400.CrossRefGoogle Scholar
[16]Martin, M. and Salinas, N., ‘Flag manifolds and the Cowen–Douglas theory’, J. Operator Theory 38 (1997), 329365.Google Scholar
[17]Müller, C., Neeb, K.-H. and Seppänen, H., ‘Borel–Weil theory for root graded Banach–Lie groups’, Preprint, arXiv:0903.1188v1.Google Scholar
[18]Neeb, K.-H., ‘Locally convex root graded Lie algebras’, Trav. Math. 14 (2003), 25120.Google Scholar
[19]Neeb, K.-H., ‘Towards a Lie theory of locally convex groups’, Jpn. J. Math. 1 (2006), 291468.CrossRefGoogle Scholar
[20]Neeb, K.-H., ‘Lie group extensions associated to projective modules of continuous inverse algebras’, Arch. Math. (Brno) 44 (2008), 339363.Google Scholar
[21]Pitts, D. R., ‘Factorization problems for nests: factorization methods and characterizations of the universal factorization property’, J. Funct. Anal. 79 (1988), 5790.CrossRefGoogle Scholar
[22]Poguntke, D., ‘Nilpotente Liesche Gruppen haben symmetrische Gruppenalgebren’, Math. Ann. 227 (1977), 5159.CrossRefGoogle Scholar
[23]Pressley, A. and Segal, G., Loop Groups, Oxford Mathematical Monographs (Oxford University Press, Oxford, 1990).Google Scholar
[24]Swan, R. G., ‘Topological examples of projective modules’, Trans. Amer. Math. Soc. 230 (1977), 201234.CrossRefGoogle Scholar
[25]Upmeier, H., Symmetric Banach Manifolds and Jordan C *-Algebras, North-Holland Mathematics Studies, 104. Notas de Matemàtica, 96 (North-Holland, Amsterdam, 1985).Google Scholar
[26]Waelbroeck, L., Théorie des Algèbres de Banach et des Algèbres Localement Convexes. Deuxième édition. Séminaire de Mathématiques Supérieures, No. 2 (Été, 1962) (Les Presses de l’Université de Montréal, Montréeal, 1967).Google Scholar
[27]Wichmann, J., ‘On the symmetry of matrix algebras’, Proc. Amer. Math. Soc. 54 (1976), 237240.CrossRefGoogle Scholar