Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-17T11:26:08.260Z Has data issue: false hasContentIssue false

A construction of simple Lie subalgebras of certain types from triple systems

Published online by Cambridge University Press:  17 April 2009

Noriaki Kamiya
Affiliation:
Department of Mathematics, The University of Aizu, Aizu-Wakamatsu 965-8580, Fukushima, Japan e-mail: kamiya@u-aizu.ac.jp
Susumu Okubo
Affiliation:
Department of Physics and Astronomy, The University of Rochester, Rochester, N.Y. 14627, United States of America, e-mail: okubo@pas.rochester.edu
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have constructed all simple Lie superalgebras from some triple systems. In particular, we shall discuss simple Lie superalgebras of P(n), Q(n) and Cartan types W(n), S(n), H(n) in this article.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1] Asano, H., ‘Symplectic triple systems and simple Lie algebras Kokyuroku’, RIMS, Kyoto University 308 1977, 4154.Google Scholar
[2] Elduque, A., Kamiya, N. and Okubo, S., ‘Simple (-1,-1) balanced Freudenthal-Kantor triple systems’, Glasgow Math. J. 45 2003, 353372.CrossRefGoogle Scholar
[3] Faulkner, J. and Ferrar, J.C., ‘Simple anti-Jordan pairs’, Comm. Alg. 8 1980, 9931013.CrossRefGoogle Scholar
[4] Frappat, L., Sciarrino, A. and Sorba, P., Dictionary on Lie superalgebras (Academic Press, San Diego, CA, 2000).Google Scholar
[5] Jacobson, N., ‘Structure and representations of Jordan qlgebras’, Amer. Math. Soc. Colloq. Publications 39 (American Mathematical Society, Providence, RI).Google Scholar
[6] Kac, V.G., ‘Classification of Z-graded Lie superalgebras and simple Jordan superalgebras’, Comm. Algebra 5 1977, 13751400.CrossRefGoogle Scholar
[7] Kamiya, N., ‘A construction of Anti-Lie triple systems from a class of triple systems’, Mem. Fac. Sci. Shimane Univ. 22 1988, 5162.Google Scholar
[8] Kamiya, N., ‘The construction of all simple Lie algebras over C from balanced Freudenthal-Kantor triple system’, in Contribute to general algebras 7 (Holder-Pichler-Tempsky, Wien, 1991), pp. 205213.Google Scholar
[9] Kamiya, N., ‘On Freudenthal-Kantor triple systems and generalised structure algebras’, in Nonassociative algebra and its applicaton, Math. Appl. 303 (Kluwer Acad. Publ., Dordrecht, 1994), pp. 198203.CrossRefGoogle Scholar
[10] Kamiya, N. and Okubo, S., ‘On δ-Lie Supertriple Systems Associated with (ε δ) Freudenthal-Kantor Supertriple Systems’, Proc. Edinburugh Math. Soc. 43 2000, 243260.CrossRefGoogle Scholar
[11] Kamiya, N. and Okubo, S., ‘Construction of Lie superalgebras D(2, 1; α), G(3) and F(4) from some triple systems’, Proc. Edinburugh Math. Soc. 46 2003, 8798.CrossRefGoogle Scholar
[12] Kamiya, N. and Okubo, S., ‘On generalised Freudenthal-Kantor triple systems and Yang-Baxter equations’, Proc. XXIV International Coll. Group Theoretical Methods in Physics (2002) (to appear).Google Scholar
[13] Lister, W.G., ‘A Structure Theory of Lie Triple System’, Trans. Amer. Math. Soc. 72 1952, 217242.CrossRefGoogle Scholar
[14] Okubo, S. and Kamiya, N., ‘Quasi-classical Lie superalgebras and Lie supertriple systems’, Comm. Algebra 30 2002, 38253850.CrossRefGoogle Scholar
[15] Scheunert, M., The theory of Lie superalgebras, Lecture Notes in Maths 716 (Springer-Verlag, Berlin, 1970).Google Scholar