Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T17:39:29.915Z Has data issue: false hasContentIssue false

Best constants for tensor products of Bernstein, Szász and Baskakov operators

Published online by Cambridge University Press:  17 April 2009

Jesús de la Cal
Affiliation:
Departamento de Matemática Aplicada y Estadística e Investigación Operativa, Facultad de Ciencias, Universidad del Paíis Vasco, Apartado 644, 48080 Bilbao, Spain e-mail: mepcaagj@lg.ehu.esmepvamaa@lg.ehu.es
Ana M. Valle
Affiliation:
Departamento de Matemática Aplicada y Estadística e Investigación Operativa, Facultad de Ciencias, Universidad del Paíis Vasco, Apartado 644, 48080 Bilbao, Spain e-mail: mepcaagj@lg.ehu.esmepvamaa@lg.ehu.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider tensor product operators and discuss their best constants in preservation inequalities concerning the usual moduli of continuity. In a previous paper, we obtained lower and upper bounds on such constants, under fairly general assumptions on the operators. Here, we concentrate on the l-modulus of continuity and three celebrated families of operators. For the tensor product of k identical copies of the Bernstein operator Bn, we show that the best uniform constant coincides with the dimension k when k ≥ 3, while, in case k = 2, it lies in the interval [2, 5/2] but depends upon n. Similar results also hold when Bn is replaced by a univariate Szász or Baskakov operator. The three proofs follow the same pattern, a crucial ingredient being some special properties of the probability distributions involved in the mentioned operators, namely: the binomial, Poisson, and negative binomial distributions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Adell, J.A. and de la Cal, J., ‘Using stochastic processes for studying Bernstein-type operators’, Rend. Circ. Mat. Palermo (2) Suppl. 33 (1993), 125141.Google Scholar
[2]Adell, J.A. and Pérez-palomares, A., ‘Best constants in preservation inequalities concerning the first modulus and Lipschitz classes for Bernstein-type operators’, J. Approx. Theory 93 (1998), 128139.CrossRefGoogle Scholar
[3]Anastassiou, G.A., Cottin, C. and Gonska, H.H., ‘Global smoothness of approximating functions’, Analysis 11 (1991), 4357.CrossRefGoogle Scholar
[4]Anastassiou, G.A., Cottin, C. and Gonska, H.H., ‘Global smoothness preservation by multivariate approximation operators’,in Israel Mathematical Conference Proceedings, Vol. IV, (Baron, S. and Leviatan, D., Editors) (Bar-Ilan University, Ramat-Gan, 1991), pp. 3144.Google Scholar
[5]Cottin, C. and Gonska, H.H., ‘Simultaneous approximation and global smoothness preservation’, Rend. Circ. Mat. Palermo (2) Suppl. 33 (1993), 259279.Google Scholar
[6]de la Cal, J. and Valle, A.M., ‘Best constants in global smoothness preservation inequalities for some multivariate operators’, J. Approx. Theory 97 (1999), 158180.CrossRefGoogle Scholar
[7]de la Cal, J. and Valle, A.M., ‘Global smoothness preservation by multivariate Bernstein-type operators’, in Handbook on Analytic Computational Methods in Applied Mathematics (CRC Press LLC, Boca Raton) (to appear).Google Scholar
[8]Kratz, W. and Stadtmüller, U., ‘On the uniform modulus of continuity of certain discrete approximation operators’, J. Approx. Theory 54 (1988), 326337.CrossRefGoogle Scholar
[9]Pérez-Palomares, A., ‘Global smoothness preservation properties for generalized Szász Kantorovich operators’, (preprint).Google Scholar