Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T20:38:20.394Z Has data issue: false hasContentIssue false

Analysis on superspace: an overview

Published online by Cambridge University Press:  17 April 2009

Vladimir G. Pestov
Affiliation:
Department of MathematicsVictoria University of WellingtonWellingtonNew Zealand e-mail: vladimir.pestov@vuw.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concept of superspace is fundamental for some recent physical theories, notably supersymmetry, and a mathematical feedback for it is provided by superanalysis and supergeometry. We survey the state of affairs in superanalysis, shifting our attention from supermanifold theory to “plain” superspaces. The two principal existing approaches to superspaces are sketched and links between them discussed. We examine a problem by Manin of representing even geometry (analysis) as a collective effect in infinite-dimensional purely odd geometry (analysis), by applying the technique of nonstandard (infinitesimal) analysis.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Almorox, A.L., ‘Supergauge theories in graded manifolds’, in Differential geometric methods in mathematical physics, Lecture Notes Mathematics 1251 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 114136.CrossRefGoogle Scholar
[2]Aral, A., ‘Some remarks on scattering theory in supersymmetric quantum mechanics’, J. Math. Phys. 28 (1987), 472476.Google Scholar
[3]Arens, R., ‘A generalization of normed rings’, Pacif. J. Math. 2 (1952), 455471.CrossRefGoogle Scholar
[4]Arnowitt, R., Nath, P. and Zumino, B., ‘Superfield densities and action principle in super-space’, Phys. Lett. B 56 (1975), 8184.CrossRefGoogle Scholar
[5]Atiyah, M., ‘A commentary on the article of Manin’, Lecture Notes in Math. 1111 (1985), p.103.CrossRefGoogle Scholar
[6]Baranov, A.M., Manin, Yu.I., Frolov, I.V. and Schwarz, A.S., ‘A superanalog of the Selberg trace formula and multiloop contributions for fermionic strings’, Comm. Math. Phys. 111 (1987), 373392.CrossRefGoogle Scholar
[7]Bartocci, C., Elementi di geometria globale delle supervarietà, (in Italian), Ph.D. Thesis (University of Genova, 1991).Google Scholar
[8]Bartocci, C. and Bruzzo, U., ‘Some remarks on the differential-geometric approach to supermanifolds’, J. Geom. Phys. 4 (1987), 391404.CrossRefGoogle Scholar
[9]Bartocci, C. and Bruzzo, U., ‘Cohomology of supermanifolds’, J. Math. Phys. 28 (1987), 23632368.CrossRefGoogle Scholar
[10]Bartocci, C. and Bruzzo, U., ‘Cohomology of the structure sheaf of real and complex supermanifolds’, J. Math. Phys. 29 (1988), 17891795.CrossRefGoogle Scholar
[11]Bartocci, C. and Bruzzo, U., ‘Existence of connections on superbundles’, Lett. Math. Phys. 17 (1989), 6168.CrossRefGoogle Scholar
[12]Bartocci, C. and Bruzzo, U., ‘Super line bundles’, Lett. Math. Phys. 17 (1989), 263274.CrossRefGoogle Scholar
[13]Bartocci, C., Bruzzo, U. and Ruipérez, D. Hernández, ‘A remark on a new category of supermanifolds’, J. Geom. Phys. 6 (1989), 509516.CrossRefGoogle Scholar
[14]Bartocci, C., Bruzzo, U. and Ruipérez, D. Hernández, The geometry of supermanifolds (Kluwer Acad. Publ., Dordrecht, 1991).CrossRefGoogle Scholar
[15]Bartocci, C., Bruzzo, U., Ruipérez, D. Hernández and Pestov, V.G., ‘On an axiomatic approach to supermanifolds’, (in Russian), Dokl. Akad. Nauk SSSR 321 (1991), 649652.Google Scholar
[16]Bartocci, C., Bruzzo, U., Ruipérez, D. Hernéndez and Pestov, V.G., ‘Foundations of super-manifold theory: the axiomatic approach’, Differential Geom. Appl. 3 (1993), 135155.CrossRefGoogle Scholar
[17]Bartocci, C., Bruzzo, U. and Landi, G., ‘Chern-Simons forms on principal superfibre bundles’, ISAS preprint 109/87/FM, Trieste, 1987.Google Scholar
[18]Batchelor, M., ‘Two approaches to supermanifolds’, Trans. Amer. Math. Soc. 258 (1980), 257270.CrossRefGoogle Scholar
[19]Batchelor, M., ‘Graded manifolds and supermanifolds’, in Mathematical Aspects of Super-space, (Seifert, H.-J. et al, Editors) (D. Reidel Publ. Co., 1984), pp. 91133.CrossRefGoogle Scholar
[20]Batchelor, M., ‘Graded manifolds and vector bundles: a functorial correspondence’, J. Math. Phys. 26 (1985), 1578–82.CrossRefGoogle Scholar
[21]Batchelor, M., ‘Graded manifolds and pairs’, in Differential geometric methods in mathematical physics, Lecture Notes in Mathematics 1251 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 6572.CrossRefGoogle Scholar
[22]Berezin, F.A., Method of Second Quantization (Academic Press, New York, 1966).Google Scholar
[23]Berezin, F.A., ‘Automorphisms of a Grassmann algebra’, Math. Notes 1 (1967), 180184.CrossRefGoogle Scholar
[24]Berezin, F.A., Introduction to algebra and analysis with anticommuting variables, (in Russian) (Moscow State University, Moscow, 1983).Google Scholar
[25]Berezin, F.A., Introduction to superanalysis, (Kirillov, A.A., Editor) (D. Reidel Publ. Co, Dordrecht-Boston, MA, 1987).CrossRefGoogle Scholar
[26]Berezin, F.A. and Kats, G.I., ‘Lie groups with commuting and anticommuting parameters’, Math. USSR Sb. 11 (1970), 311326.CrossRefGoogle Scholar
[27]Berezin, F.A. and Leĭtes, D.A., ‘Supermanifolds’, Soviet Math. Dokl. 16 (1975), 12181222.Google Scholar
[28]Berezin, F.A. and Marinov, M.S., ‘Particle spin dynamics as the Grassmann variant of classical mechanics’, Ann. Physics 104 (1977), 336362.CrossRefGoogle Scholar
[29]Bernstein, J. and Leĭtes, D., ‘Integral forms and Stokes' formula on supermanifolds’, Funct. Anal. Appl. 11 (1977).Google Scholar
[30]Bernstein, J. and Leĭtes, D., ‘How to integrate differential forms on supermanifolds’, Funct. Anal. Appl. 11 (1977), 219221.CrossRefGoogle Scholar
[31]Bernstein, J. and Leĭtes, D., ‘Lie superalgebras and supergroups’, Rep. Dept. Math. Univ. Stockholm 14 (1988), 132260.Google Scholar
[32]Blattner, R.J. and Rawnsley, J.H., ‘Remarks on Batchelor's theorem’, in Mathematical Aspects of Superspace (D. Reidel Publ. Co., 1984), pp. 161171.CrossRefGoogle Scholar
[33]Boyer, C.P. and Valenzuela, O.A. Sánchez, ‘Some problems of elementary calculus in superdomains (with a survey of the theory of supermanifolds)’, Aportaciones Mat. 5 (1988), 111143.Google Scholar
[34]Boyer, C.P. and Valenzuela, O.A. Sánchez, ‘Lie supergroup actions on supermanifolds’, Trans. Amer. Math. Soc. 323 (1991), 151173.CrossRefGoogle Scholar
[35]Boyer, C. and Gitler, S., ‘The theory of G -supermanifolds’, Trans. Amer. Math. Soc. 285 (1984), 241267.Google Scholar
[36]Bruzzo, U., ‘Geometry of rigíd supersymmetry’, Hadronic J. 9 (1986), 2530.Google Scholar
[37]Bruzzo, U., ‘Supermanifolds, supermanifold cohomology, and super vector bundles’, in Differential geometric methods in theoretical physics, NATO ASI Ser. 250 (Kluwer, Dordrecht, 1988), pp. 417440.CrossRefGoogle Scholar
[38]Bruzzo, U., ‘Berezin integration on DeWitt supermanifolds’, Israel J. Math. 80 (1992), 161169.CrossRefGoogle Scholar
[39]Bruzzo, U. and Cianci, R., ‘An existence result for super Lie groups’, Lett. Math. Phys. 8 (1984), 279–88.CrossRefGoogle Scholar
[40]Bruzzo, U. and Cianci, R., ‘On the structure of superfields in a field theory on a super-manifold’, Lett. Math. Phys. 11 (1986), 2126.CrossRefGoogle Scholar
[41]Bruzzo, U. and Ruipérez, D. Hérnandez, ‘Characteristic classes of super vector bundles’, J. Math. Phys. 30 (1989), 12331237.CrossRefGoogle Scholar
[42]Bryant, P., ‘DeWitt supermanifolds and infinite-dimensional ground rings’, J. London Math. Soc. 39 (1989), 347368.CrossRefGoogle Scholar
[43]Carr, J.L., ‘Spin structures and superworldsheet topology’, Classical Quantum Gravity 6 (1989), 125140.CrossRefGoogle Scholar
[44]Choquet-Bruhat, Y., ‘Mathematics for classical supergravities’, in Lecture Notes in Math. 1251 (Springer-Verlag, New York, 1987), pp. 7390.Google Scholar
[45]Choquet-Bruhat, Y., Graded bundles and supermanifolds, Monographs and Textbooks in Physical Sciences (Bibliopolis, Naples, 1990).Google Scholar
[46]Choquet-Bruhat, Y. and DeWitt-Morette, C., Analysis, manifolds and physics. Part II: 92 Applications (North-Holland, Amsterdam, Oxford, New York, Tokyo, 1989).Google Scholar
[47]Coqueraux, R., Jadczyk, A., and Kastler, D., ‘Differential and integral geometry of Grassmann algebras’, Rev. Math. Phys. 3 (1991), 6399.CrossRefGoogle Scholar
[48]Connes, A., ‘Non-commutative differential geometry’, Publ. Math. IHES 62 (1985), 41144.CrossRefGoogle Scholar
[49]Connes, A., ‘On the Chern character in θ summable Fredholm modules’, Comm. Math. Phys. 139 (1991), 171181.CrossRefGoogle Scholar
[50]Corwin, L., Ne'eman, Y., and Sternberg, S., ‘Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry)’, Rev. Modern Phys. 47 (1975), 573603.CrossRefGoogle Scholar
[51]Dell, J. and Smolin, L., ‘Graded manifold theory as the geometry of supersymmetry’, Commun. Math. Phys. 66 (1979), 197221.CrossRefGoogle Scholar
[52]Demazure, M. and Gabriel, P., Introduction to algebraic geometry and ebraic groups (North-Holland, Amsterdam, New York, Oxford, 1980).Google Scholar
[53]DeWitt, B.S., Dynamical theory of groups and fields (Gordon and Breach, New York, London, Paris, 1965).Google Scholar
[54]DeWitt, B.S., Supermanifolds (Cambridge University Press, London, 1984).Google Scholar
[55]DeWitt, B.S., ‘The spacetime approach to quantum field theory’, in Relativité, groupes et topologie II. Les Houches, Session XL (1983), (DeWitt, B.S. and Stora, R., Editors) (North-Holland, Amsterdam, Oxford, New York, Tokyo, 1986), pp. 383738.Google Scholar
[56]Faustov, A.A., On the Banach-Grassmann algebras. (Institute of Mathematics Preprint, Novosibirsk, 1991).Google Scholar
[57]Feigin, B.L. and Fuks, D.B., ‘Lie groups and algebras’, (in Russian), in Contemporary problems of mathematics. Fundamental directions 21 (VINITI, Moscow, 1988), pp. 121213.Google Scholar
[58]Fetter, H. and Ongay, F., ‘An explicit classification of (1, 1)-dimensional Lie supergroup structures’, in Proc. XIX Int. Conf. on Group Theor. Methods in Physics (Salamanca, 1992). Anales de Física de la Real Soc. Esp. de Fis. Vol. II, 1993, pp. 261269.Google Scholar
[59]Gates, S.J., Grusaru, M.T., Roc˘ek, M. and Siegel, W., Superspace, or One Thousand and One Lessons in Supersymmetry (Benjamin/Cummings, Reading (Mass.), 1983).Google Scholar
[60]Green, P., ‘On holomorphic graded manifolds’, Trans. Amer. Math. Soc. 85 (1982), 587590.Google Scholar
[61]Helemskiĭ, A.Ya., Banach and polynormed algebras. General theory, representations, homology, (in Russian) (Nauka, Moscow, 1989).Google Scholar
[62]Ruipérez, D. Hernández and Masqué, J. Muñoz, ‘Global variational calculus on graded manifolds, I: graded jet bundles, structure 1-form and graded infinitesimal contact transformations’, J. Math. Pures Appl. 63 (1984), 283309.Google Scholar
[63]Ruipérez, D. Hernández and Masqué, J. Muñoz, ‘Construction intrinsèque du faisceau de Berezin d'una variété graduée’, C.R. Acad. Sci. Paris Sér. I 301 (1985), 915918.Google Scholar
[64]Hoyos, J., Quirós, M., Mittelbrunn, J. Ramírez and de Urríes, F.J., ‘Generalized supermanifolds. I–III’, J. Math. Phys. 25 (1984), 833854.CrossRefGoogle Scholar
[65]Ivashchuk, V.D., ‘On annihilators in infinite-dimensional Grassmann-Banach algebras’, (in Russian), Teoret. Mat. Fiz. 79 (1989), 3040.Google Scholar
[66]Jadczyk, A. and Kastler, D., ‘Graded Lie-Cartan pairs I’, Rep. Math. Phys. 25 (1987), 151.CrossRefGoogle Scholar
[67]Jadczyk, A. and Kastler, D., ‘Graded Lie-Cartan pairs II. The fermionic differential calculus’, Ann. Physics. 179 (1987), 169200.CrossRefGoogle Scholar
[68]Jadczyk, A. and Pilch, K., ‘Classical limit of CAR and self-duality in the infinite-dimensional Grassmann algebra’, in Quantum theory of particles and fields, (Jancewicz, B. and Lukierski, J., Editor) (World Scientific, Singapore, 1983).Google Scholar
[69]Jadczyk, A. and Pilch, K., ‘Superspaces and supersymmetries’, Commun. Math. Phys. 78 (1981), 373390.CrossRefGoogle Scholar
[70]Jaffe, A. and Quinn, F., ‘“Theoretical mathematics”: toward a cultural synthesis of mathematics and theoretical physics’, Bull. Amer. Math. Soc. 29 (1993), 113.CrossRefGoogle Scholar
[71]Johnstone, P.T., Topos theory (Academic Press, London, New York, San Fransisco, 1977).Google Scholar
[72]Joyal, A. and Street, R., Braided tensor categories (Macquarie University preprint).CrossRefGoogle Scholar
[73]Kac, V.G., ‘Lie superalgebras’, Adv. in Math. 26 (1977), 896.CrossRefGoogle Scholar
[74]Kastler, D., ‘Introduction to Alain Connes’ non-commutative differential geometry’, in Fields and Geometry 1986. Proc. XXIInd Winter School and Workshop on Theor. Phys. Karpacz, Poland., (Jadczyk, A., Editor) (World Scientific), pp. 387465.Google Scholar
[75]Kastler, D. and Stora, R., ‘Lie-Cartan pairs’, J. Geom. Phys. 2 (1985), 131.CrossRefGoogle Scholar
[76]Khrennikov, A.Yu., ‘Functional superanalysis’, Russian Math. Surveys 43 (1988), 103137.CrossRefGoogle Scholar
[77]Klimek, S. and Lesniewski, A., ‘Pfaffians on Banach spaces’, J. Fund. Anal. 102 (1991), 314330.CrossRefGoogle Scholar
[78]Kobayashi, Y. and Nagamachi, Sh., ‘Usage of infinite-dimensional nuclear algebras in superanalysis’, Lett. Math. Phys. 14 (1987), 1523.Google Scholar
[79]Kostant, B., ‘Graded manifolds, graded Lie theory, and prequantization’, in Differential geometric methods in mathematical physics, Lecture Notes Mathematics 570 (Springer-Verlag, Berlin, Heidelberg, New York, 1977), pp. 177306.CrossRefGoogle Scholar
[80]Kupsch, J., ‘Measures for fermionic integration’, Fortschr. Phys. 35 (1987), 415436.CrossRefGoogle Scholar
[81]Kusraev, A.G. and Kutateladze, S.S., Nonstandard methods of analysis, (in Russian) (Nauka, Novosibirsk, 1990).Google Scholar
[82]Leĭtes, D.A., ‘Introduction to the theory of supermanifolds’, Russian Math. Surveys 35 (1980), 174.CrossRefGoogle Scholar
[83]Leĭtes, D.A., The theory of supermanifolds, (in Russian) (Karelian Branch Acad. Sciences U.S.S.R., Petrozavodsk, 1983).Google Scholar
[84]Leĭtes, D.A., ‘Some open problems in theory of supermanifolds’, Duke Math. J. 54 (1987), 649656.CrossRefGoogle Scholar
[85]Leĭtes, D., Kochetkov, Yu. and Weintrob, A., ‘New invariant differential operetors on supermanifolds and pseudo-(co)homology’, in General topology and its applications Proc. 5th Northeast Conf., NY, (1989)., Lect. Notes Pure and Appl. Math. 134, (1991), pp. 217238.Google Scholar
[86]Majid, S., Braided groups (DAMTP preprint 90–42, 1990).Google Scholar
[87]Manin, Y., ‘New dimensions in geometry’, in Lecture Notes in Math. 1111 (Springer-Verlag, New York, 1985), pp. 59101.Google Scholar
[88]Manin, Yu.I., Gauge field theory and complex geometry, Grundlehren Math. Wiss. 289 (Springer-Verlag, Berlin, Heidelberg, New York, 1988).Google Scholar
[89]Manin, Yu.I., Quantum groups and non-commutative differential geometry, Montreal University preprint CRM-1561, 1988.Google Scholar
[90]Manin, Yu.I., Topics in noncommutative geometry (Princeton University Press, Princeton, NJ, 1991).CrossRefGoogle Scholar
[91]Martin, J.L., ‘Generalized classical dynamics, and the “classical analogue” of a Fermi oscillator’, Proc. Roy. Soc. London Ser. A 251 (1959), 536543.Google Scholar
[92]Matsumoto, S. and Kakazu, K., ‘A note on topology of supermanifolds’, J. Math. Phys. 27 (1986), 29602962.CrossRefGoogle Scholar
[93]Michael, E., ‘Locally multiplicatively-convex topological algebras’, Mem. Amer. Math. Soc. 11 (1952).Google Scholar
[94]Moerdijk, I. and Reyes, G.E., Models for smooth infinitesimal analysis. (Springer-Verlag, Berlin, Heidelberg, New York, 1991).CrossRefGoogle Scholar
[95]Molotkov, V., Infinite dimensional-supermanifolds (ICTP preprint IC/84/183, Trieste, 1984).Google Scholar
[96]Monterde, J. and Montesinos, A., ‘Integral curves of derivations’, Ann. Global Anal. Geom. 6 (1988), 177189.CrossRefGoogle Scholar
[97]Nieuwenhuizen, P., ‘Supergravity’, Phys. Rep. 68 (1981), 189398.CrossRefGoogle Scholar
[98]Ongay-Larios, F. and Sánchez-Valenzuela, O.A., ‘1|1-supergroup actions and superdiffer-ential equations’, Proc. Amer. Math. Soc. 116 (1992), 843850.Google Scholar
[99]Penkov, I., ‘Classical Lie supergroups and their superalgebras and their representations’, Publ. Inst. Fourier 117 (1988).Google Scholar
[100]Pestov, V., ‘On a “super” version of Lie's third fundamental theorem’, Lett. Math. Phys. 18 (1989), 2733.CrossRefGoogle Scholar
[101]Pestov, V., ‘Interpreting superanalyticity in terms of convergent series’, Classical Quantum Gravity 6 (1989), L145–L159.CrossRefGoogle Scholar
[102]Pestov, V., ‘Even sectors of Lie superalgebras as locally convex Lie algebras’, J. Math. Phys. 32 (1991), 2432.CrossRefGoogle Scholar
[103]Pestov, V., ‘Ground algebras for superanalysis’, Rep. Math. Phys. 29 (1991), 275287.CrossRefGoogle Scholar
[104]Pestov, V.G., ‘Nonstandard hulls of normed Grassmann algebras and their application in superanalysis’, Soviet Math. Dokl. 43 (1991), 456460.Google Scholar
[105]Pestov, V.G., ‘A contribution to nonstandard superanalysis’, J. Math. Phys. 33 (1992), 32633273.CrossRefGoogle Scholar
[106]Pestov, V.G., ‘General construction of Banach-Grassmann algebras’, Atti Accad. Naz. Lincei Rend. (9) 3 (1992), 223231.Google Scholar
[107]Pestov, V.G., ‘Universal arrows to forgetful functors from categories of topological algebra’, Bull. Austral. Math. Soc. 48 (1993), 209249.CrossRefGoogle Scholar
[108]Pestov, V.G., ‘Soul expansion of G superfunctions’, J. Math. Phys. 34 (1993), 33163323.CrossRefGoogle Scholar
[109]Pestov, V.G., ‘An analytic structure emerging in the presence of infinitely many odd coordinates’, New Zealand J. Math. 22 (1993), 7584.Google Scholar
[110]Pestov, V.G., ‘On enlargability of infinite-dimensional Lie superalgebras’, J. Geom. Phys. 10 (1993), 295314.CrossRefGoogle Scholar
[111]Pestov, V.G., ‘A correspondence between finite-dimensional Lie superalgebras and supergroups’, Extracta Mathematicae 7 (1992), 119125.Google Scholar
[112]Pestov, V.G., On even collective effects in purely odd superspaces, Research Report RP-93–132, Dept. Math., Victoria University of Wellington, October 1993.Google Scholar
[113]Picken, P.F., ‘Supergroups have no extra topology’, J. Phys. A 16 (1983), 34573462.CrossRefGoogle Scholar
[114]Rabin, J., ‘Supermanifold cohomology and the Wess-Zumino term of the covariant super-string action’, Comm. Math. Phys. 108 (1987), 375389.CrossRefGoogle Scholar
[115]Rabin, J. and Crane, L., ‘Global properties of supermanifolds’, Comm. Math. Phys. 100 (1985), 141160.CrossRefGoogle Scholar
[116]Rabin, J. and Crane, L., ‘How different are the supermanifolds of Rogers and DeWitt?’, Comm. Math. Phys. 102 (1985), 123137.CrossRefGoogle Scholar
[117]Regge, T., ‘The group manifold approach to unified gravity’, in Relativité, groupes et topologie II (Elsevier Sci. Publishers, Amsterdam, 1984), pp. 9331006.Google Scholar
[118]Rittenberg, V. and Scheunert, M., ‘Elementary construction of graded Lie groups’, J. Math. Phys. 19 (1978), 709713.CrossRefGoogle Scholar
[119]Robinson, A., Non-Standard Analysis (North-Holland Publ. Co, Amsterdam, London, 1970).Google Scholar
[120]Rogers, A., ‘A global theory of supermanifolds’, J. Math. Phys. 21 (1980), 13521365.CrossRefGoogle Scholar
[121]Rogers, A., ‘Some examples of compact supermanifolds with non-Abelian fundamental group’, J. Math. Phys. 22 (1981), 443444.CrossRefGoogle Scholar
[122]Rogers, A., ‘Super Lie groups: global topology and local structure’, J. Math. Phys. 22 (1981), 939945.CrossRefGoogle Scholar
[123]Rogers, A., ‘Aspects of the geometrical approach to supermanifolds’, in Mathematical Aspects of Superspace, (Seifert, H.-J. et al, Editors) (D. Reidel Publ. Co., 1984), pp. 135147.CrossRefGoogle Scholar
[124]Rogers, A., ‘Integration on supermanifolds’, in Mathematical Aspects of Superspace, (Seifert, H.-J. et al. , Editors) (D. Reidel Publ. Co., 1984), pp. 149160.CrossRefGoogle Scholar
[125]Rogers, A., ‘Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebras’, Comm. Math. Phys. 105 (1986), 375384.CrossRefGoogle Scholar
[126]Rosly, A.A., Schwarz, A.S. and Voronov, A.A., ‘Superconformal geometry and string theory’, Comm. Math. Phys. 120 (1989), 437450.CrossRefGoogle Scholar
[127]Rota, G.-C. and Stein, J.A., ‘Supersymmetric Hilbert space’, Proc. Nat. Acad. Sci. USA 87 (1990), 25212524.CrossRefGoogle ScholarPubMed
[128]Rothstein, M.J., Supermanifolds over an arbitrary graded commutative algebra, Ph.D. thesis (UCLA, Los Angeles, CA, 1984).Google Scholar
[120]Rothstein, M.J., ‘The axioms of supermanifolds and a new structure arising from them’, Trans. Amer. Math. Soc. 297 (1986), 159180.CrossRefGoogle Scholar
[130]Rothstein, M.J., ‘Equivariant splittings of supermanifolds’, J. Geom. Phys. 12 (1993), 145152.CrossRefGoogle Scholar
[131]Salam, A. and Strathdee, J., ‘Super-gauge transformations’, Nuclear Phys. B 76 (1974), 477482.CrossRefGoogle Scholar
[132]Valenzuela, O.A. Sánchez, ‘Linear supergroup actions. I: On the defining properties’, Trans. Amer. Math. Soc. 307 (1988), 569595.CrossRefGoogle Scholar
[133]Valenzuela, O.A. Sánchez, ‘Matrix computations in linear superalgebra’, Linear Algebra Appl. 111 (1988), 151181.CrossRefGoogle Scholar
[134]Valenzuela, O.A. Sánchez, Differential-geometric approach to supervector bundles, CIMAT-preprint 1991, Centro de Investigación en Matemáticas, Guanajuato, Mexico (1991).Google Scholar
[135]Valenzuela, O.A. Sánchez, ‘A note on integration of 1-superforms along (1, 1)-dimensional lines’, in Proc. XIX Int. Conf. on Group Theor. Methods in Physics (Salamanca, 1992), Anales de Física de la Real Soc. Esp. de Fís. Vol. II, 1993, pp. 277280.Google Scholar
[136]Schmitt, Th., Infinite-dimensional supermanifolds I, Report R-Math-08/88 (Akad. Wiss. DDR, Berlin, 1988).Google Scholar
[137]Schwarz, A.S., ‘Supergravity, complex geometry and G-structures’, Comm. Math. Phys. 87 (1982/1983), 3763.CrossRefGoogle Scholar
[138]Schwinger, J., ‘A note on the quantum dynamical principle’, Philos. Mag. 44 (1953), 11711193.CrossRefGoogle Scholar
[139]Stroyan, K.D. and Luxemburg, W.A.J., Introduction to the theory of infinitesimals (Academic Press, New York, 1976).Google Scholar
[140]Takeuti, G., ‘Boolean valued analysis’, in Lecture Notes in Math. 753 (Springer-Verlag, New York, 1979), pp. 714731.Google Scholar
[141]Teofilatto, P., ‘Enlargeable graded Lie algebras of supersymmetry’, J. Math. Phys. 28 (1987), 991996.CrossRefGoogle Scholar
[142]Vladimirov, V.S. and Volovich, I.V., ‘Superanalysis – I. Differential calculus’, Theoret. and Math. Phys. 59 (1984), 317335.CrossRefGoogle Scholar
[143]Vladimirov, V.S. and Volovich, I.V., ‘Superanalysis – II. Integral calculus’, Theoret. and Math. Phys. 60 (1984), 743765.CrossRefGoogle Scholar
[144]Volkov, D.V. and Akulov, V.P., ‘Is the neutrino a Goldstone particle’, Phys. Lett. B 46 (1973), 109110.CrossRefGoogle Scholar
[145]Wess, J. and Zumino, B., ‘Supergauge transformations in four dimensions’, Nuclear Phys. B 70 (1974), 3950.CrossRefGoogle Scholar
[146]Witten, E., ‘Supersymmetry and Morse theory’, J. Differential Geom. 17 (1982), 661692.CrossRefGoogle Scholar
[147]Yetter, D.N., ‘Models for synthetic supergeometry’, Cahiers de topologie et géometrie différentielle catégoriques 29 (1988), 87108.Google Scholar