Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T19:57:30.574Z Has data issue: false hasContentIssue false

Selection for increased resistance to a granulosis virus in the potato moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae)

Published online by Cambridge University Press:  10 July 2009

D. T. Briese
Affiliation:
CSIRO, Division of Entomology, P.O. Box 1700 Canberra City, ACT 2601, Australia
H. A. Mende
Affiliation:
CSIRO, Division of Entomology, P.O. Box 1700 Canberra City, ACT 2601, Australia

Abstract

Serial exposure of a susceptible laboratory strain of Phthorimaea operculella (Zell.) recently obtained from the field to granulosis virus over six generations produced a 140-fold increase in LD50. The evidence suggests that this was due to a change in frequency of a resistance gene within the population. An attempt to select for even greater resistance in an already highly resistant laboratory strain resulted in only a small increase, due mainly to reduced variability in response of the population. The implications of resistance to viral insecticides developing under field conditions are discussed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. E. & Ignoffo, C. M..(1969).The nucleopolyhedrosis virus of Heliothis: quantitative in vivo estimates of virulence. — J. Invertebr. Pathol. 13, 378381.CrossRefGoogle Scholar
Briese, D. T.. (1981 a). Resistance of insect species to microbial pathogens. — pp. 511545 in Davidson, E. W.. (Ed.). Pathogenesis of invertebrate microbial diseases. —562 pp.Totowa, New Jersey, Allenheld, Osmun & Co.Google Scholar
Briese, D. T.. (1981 b).The incidence of parasitism and disease in field populations of the potato moth Phthorimaea operculella (Zeller) in Australia. — J. Aust. entomol. Soc. 20, 319326.CrossRefGoogle Scholar
Briese, D. T.. (1982).Genetic basis for resistance to a granulosis virus in the potato moth Phthorimaea operculella. — J. Invertebr. Pathol. 39, 215218.CrossRefGoogle Scholar
Briese, D. T. & Mende, H. A.. (1981). Differences in susceptibility to a granulosis virus between field populations of the potato moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). —Bull. ent. Res. 71, 1118.CrossRefGoogle Scholar
Burges, H. D. (1971). Possibilities of pest resistance to microbial control agents. — pp. 445457 in Burges, H. D. & Hussey, N. W.. (Eds.).Microbial control of insects and mites.— 861 pp. London, Academic Press.Google Scholar
Curtis, C. F.Cook, L. M. & Wood, R.J. (1978). Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. — Ecol Entomol. 3, 273287.CrossRefGoogle Scholar
Finney, D. J.. (1952). Probit analysis. A statistical treatment ofthe sigmoid response curve. —2nd edn., 318 pp. Cambridge, Univ. Press.Google Scholar
Georghiou, G. P. & Taylor, C. E.. (1977) Genetic and biological influences in the evolution of insecticide resistance. — J. econ. Ent. 70, 319323.CrossRefGoogle ScholarPubMed
Huber, J.. (1974). Selektion einer Resistanz gegen perorate Infektion mit einem Granulosis-virus bei einem Laborstamm des Apfelwicklers, Laspeyresia pomonella L. — 45 pp. Diss. Nr. 5044, ETH-Zurich.Google Scholar
Ignoffo, C. M.. (1966). Effects of age on mortality of Heliothis zea and Heliothis virescens larvae exposed to a nuclear-polyhedrosis virus. — J. Invertebr. Pathol. 8, 279282.CrossRefGoogle Scholar
Ignoffo, C. M. & Allen, G. E.. (1972). Selection for resistance to a nucleopolyhedrosis virus in laboratory populations of the cotton bollworm, Heliothis zea. — J. Invertebr. Pathol. 20, 187192.CrossRefGoogle Scholar
Ignoffo, C. M. & Garcia, C. (1979). Shifts in ratios of laboratory populations of Heliothis zea and H. virescens surviving exposure to a nonspecific and specific nucleopolyhedrosis virus. — Environ. Entomol. 8, 11021104.CrossRefGoogle Scholar
Matthiessen, J. N.Christian, R. L.Grace, T. D. C. & Filshie, B. K.. (1978). Large-scale field propagation and the purification of the granulosis virus of the potato moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). — Bull. ent. Res. 68, 385391.CrossRefGoogle Scholar
Mckenzie, J. A.Dearn, J. M. & Whitten, M. J.. (1980). Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina. Aust. J. biol. Sci. 33, 8595.CrossRefGoogle ScholarPubMed
Reed, E. M..(1971). Factors affecting the status of a virus as a control agent for the potato moth (Phthorimaea operculella (Zell.) (Lep., Gelechiidae)). — Bull. ent. Res. 61, 207222.CrossRefGoogle Scholar
Uzigawa, K. & Aruga, H.. (1966).On the selection of resistant strains to the infectious Flacherie virus in the silkworm Bombyx mori L. [in Japanese]. — J. seric. Sci., Tokyo 35, 2327.Google Scholar
Watanabe, H.. (1967). Development of resistance in the silkworm, Bombyx mori, to peroral infection of a cytoplasmic-polyhedrosis virus. — J. Invertebr. Pathol. 9, 474479.CrossRefGoogle Scholar
Whitlock, V. H.. (1977). Failure of a strain of Heliothis armigera (Hiibn.) (Noctuidae: Lepidoptera) to develop resistance to a nuclear polyhedrosis virus and a granulosis virus. — J, ent. Soc. slh. Afr. 40, 251253.Google Scholar