Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T22:54:32.892Z Has data issue: false hasContentIssue false

Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review

Published online by Cambridge University Press:  10 July 2009

D. G. Pollard
Affiliation:
Brunel Technical College, Bristol BS7 9BU, England

Extract

The factors responsible for determining the host-plants and feeding sites of aphids, and the various probing activities (the role of the labium, stylet insertion, surface saliva deposition, the behaviour of the aphid, virus transmission) are examined. There is a brief review of stylet structure and movement and the possible sensory nature of these organs, followed by a detailed review of the characteristics of aphid stylet paths in plant tissues. The penetration of epidermis and vascular tissues is treated separately while that within the intermediate tissues is covered in relation to leaves and stems, roots, trees, galls and excised tissue as well as in separate sections on Aphis fabaeScopoli and Myzus persicae (Sulzer). Stylet destinations and behaviour in the sieve tubes are discussed together with general features such as rate and depth of penetration, guidance to the feeding site, effects of tissue hardness and stylet withdrawal. The ingestion rate of plant sap is reviewed and its constitution and importance examined together with the significance of artificial diets. The salivary secretions including sheaths and tracks, their functions and their role in the transference of material between aphid and host are dealt with. The nature of the physical and internal damage resulting from aphid feeding is briefly covered, and also some plant-insect interrelations. The aphid species whose stylets have been examined in plant tissue are listed.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, C. O. & Thurston, R. (1969). Plant age in relation to the resistance of Nicotiana to the green peach aphid.—J. econ. Ent. 61, 13561359.CrossRefGoogle Scholar
Adams, J. B. (1967). A physiologic difference in aphids (Homoptera) raised on excised leaves and on intact plants.—Can. J. Zool. 45, 588590.Google Scholar
Adams, J. B. & Drew, M. E. (1963). A cellulose-hydrolyzing factor in aphids.—Can. J. Zool. 41, 12051212.CrossRefGoogle Scholar
Adams, J. B. & Drew, M. E. (1965). A cellulose-hydrolyzing factor in aphid saliva.—Can. J. Zool. 43, 489496.Google Scholar
Adams, J. B. & Fyfe, F. W. (1970). Stereoscan views of some aphid mouthparts.—Can. J. Zool. 48, 10331034.CrossRefGoogle Scholar
Adams, J. B. & McAllan, J. W. (1956). Pectinase in the saliva of Myzus persicae (Sulz.) (Homoptera: Aphididae).—Can. J. Zool. 43, 541543.Google Scholar
Adams, J. B. & McAllan, J. W. (1958). Pectinase in certain insects.—Can. J. Zool. 36, 305308.CrossRefGoogle Scholar
Adlerz, W. C. (1971). A reservoir-equipped Moericke trap for collecting aphids.—J. econ. Ent. 64, 966967.CrossRefGoogle Scholar
Aikman, D. P. & Anderson, W. P. (1971). A quantitative investigation of a peristaltic model for phloem translocation.—Ann. Bot. 35, 761772.Google Scholar
Akey, D. H. & Beck, S. D. (1971). Continuous rearing of the pea aphid, Acyrthosiphon pisum, on a holidic diet.—Ann. ent. Soc. Am. 64, 353356.Google Scholar
Allen, T. C. (1947). Suppression of insect damage by means of plant hormones.—J. econ. Ent. 40, 814817.Google Scholar
Alonso, C. (1971). The effects of gibberellic acid upon developmental processes in Drosophila hydei.—Entomologia exp. appl. 14, 7382.CrossRefGoogle Scholar
Amman, G. D. (1970). Phenomena of Adelges piceae populations (Homoptera: Phylloxeridae) in North Carolina.—Ann. ent. Soc. Am. 63, 17271734.CrossRefGoogle Scholar
Anders, F. (1958). Aminosäuren als gallenerregende Stoffe der Reblaus (Viteus (Phylloxera) vitifolii Shimer).—Experientia 14, 6263.CrossRefGoogle Scholar
Anders, F. (1960). Untersuchungen über das cecidogene Prinzip der Reblaus (Viteus vitifolii Shimer). II. Biologische Untersuchungen über das galleninduzierende Sekret der Reblaus.—Biol. Zbl. 79, 679700.Google Scholar
Anderson, J. M. & Bradley, R. H. E. (1963). Attempts to obtain electrophysiological activity from aphid stylets.—Can. J. Zool. 41, 705709.CrossRefGoogle Scholar
Arn, H. & Cleere, J. S. (1971). A double-label choice-test for the simultaneous determination of diet preference and ingestion by the aphid Amphorophora agathonica.—Entomologia exp. appl. 14, 377387.CrossRefGoogle Scholar
Arnaud, G. (1918). Les Astérinées.—Annls Éc. natn. Agric. Montpellier. 1918, 5265.Google Scholar
Arriaga, H. O. (1954). Resistencia a la toxemia de Schizaphis graminum (Rond.) en cereales finos.—Revta. Fac. Agron. Eva Perón. 30, 65101.Google Scholar
Arya, H. C., Hildebrandt, A. C.Riker, A. J. (1962). Nucleic acids in callus tissues from grape stem and Phylloxera gall.—Phyton, B. Aires 19, 2729.Google Scholar
Asahina, E. & Tanno, K. (1964). A large amount of trehalose in a frost-resistant insect.—Nature, Lond. 204, 1222.CrossRefGoogle Scholar
Atkins, M. D. & Woods, T. A. D. (1968). Survival of the balsam woolly aphid on Abies logs.—Can. Ent. 100, 412420.CrossRefGoogle Scholar
Auclair, J. L. (1958). Honeydew excretion in the pea aphid, Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae).—J. Insect Physiol. 2, 330337.Google Scholar
Auclair, J. L. (1959). Feeding and excretion by the pea aphid, Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae), reared on different varieties of peas.—Entomologia exp. appl. 2, 279286.CrossRefGoogle Scholar
Auclair, J. L. (1963). Aphid feeding and nutrition.—A. Rev. Ent. 8, 439490.CrossRefGoogle Scholar
Auclair, J. L. (1964). Recent advances in the feeding and nutrition of aphids.—Can. Ent. 96, 241249.CrossRefGoogle Scholar
Auclair, J. L. (1965). Feeding and nutrition of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphidae), on chemically defined diets of various pH and nutrient levels.—Ann. ent. Soc. Am. 58, 855875.Google Scholar
Auclair, J. L. (1967 a). Effects of pH and sucrose on rearing the cotton aphid, Aphis gossypii, on a germ-free and holidic diet.—J. Insect Physiol. 13, 431446.CrossRefGoogle Scholar
Auclair, J. L. (1967 b). Effects of light and sugars on rearing the cotton aphid, Aphis gossypii, on a germ-free and holidic diet.—J. Insect Physiol. 13, 12471268.Google Scholar
Auclair, J. L. (1969). Nutrition of plant-sucking insects on chemically defined diets.—Entomologia exp. appl. 12, 623641.CrossRefGoogle Scholar
Auclair, J. L. & Cartier, J. J. (1960). Effets comparés de jeûnes intermittents et de périodes équivalentes de subsistance sur des variétés résistantes ou sensibles de pois, Pisum sativum L., sur la croissance, la reproduction et l'excrétion du puceron du pois, Acyrthosiphon pisum (Harr.) (Homopteres: Aphidides).—Entomologia exp. appl. 3. 315326.Google Scholar
Auclair, J. L. & Cartier, J. J. (1963). Pea aphid: rearing on a chemically defined diet.—Science, N.Y. 142, 10681069.Google Scholar
Auclair, J. L. & Maltais, J. B. (1950). Studies on the resistance of plants to aphids by the method of paper partition chromatography.—Can. Ent. 82, 175176.Google Scholar
Auclair, J. L. & Maltais, J. B. (1952). Occurrence of gamma-amino-butyric acid in extracts of Pisum sativum (L.) and in the honeydew of Myzus circumflexus (Buck.).—Nature, Lond. 170, 11141115.Google Scholar
Auclair, J. L., Maltais, J. B. & Cartier, J. J. (1957). Factors in resistance of peas to the pea aphid, Acyrihosiphon pisum (Harr.) (Homoptera: Aphididae). II. Amino acids.—Can. Ent. 89, 457464.Google Scholar
Auclair, J. L. & Raulston, J. R. (1966). Feeding of Lygus hesperus (Hemiptera: Miridae) on a chemically defined diet.—Ann. ent. Soc. Am. 59, 10161017.CrossRefGoogle Scholar
Auclair, J. L. & Srivastava, P. N. (1972). Some mineral requirements of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae).—Can. Ent. 104, 927936.CrossRefGoogle Scholar
Avery, D. J. & Briggs, J. B. (1968 a). The aetiology and development of damage in young fruit trees infested with fruit tree red spider mite, Panonychus ulmi (Koch).—Ann. appl. Biol. 61, 277288.Google Scholar
Avery, D. J. & Briggs, J. B. (1968 b). Damage to leaves caused by fruit tree red spider mite, Panonychus ulmi (Koch).—J. hort. Sci. 43, 463473.CrossRefGoogle Scholar
Bacon, J. S. D. & Dickinson, B. (1957). The origin of melezitose: a biochemical relationship between the lime tree (Tilia spp.) and an aphis (Eucallipterus tiliae L.).—Biochem. J. 66, 289297.CrossRefGoogle Scholar
Baker, E. A. & Honeyborne, C. H. B. (1971). Insect studies.—Rep. agric. hort. Res. Stn. Univ. Bristol. 1970, 89.Google Scholar
Baker, P. F. (1960). Aphid behaviour on healthy and on yellows-virus-infected sugar beet.—Ann. appl. Biol. 48, 384391.Google Scholar
Balch, R. E. (1952). Studies of the balsam woolly aphid, Adelges piceae (Ratz.) (Homoptera:Phylloxeridae) and its effects on balsam fir, Abies balsamea (L.) Mill.—Publs Can. Dep. Agric. no. 867, 176.Google Scholar
Balch, R. E., Clark, J. & Bonga, J. M. (1964). Hormonal action in production of tumours and compression wood by an aphid.—Nature, Lond. 202, 721722.Google Scholar
Balch, R. E. & Underwood, G. R. (1950). The life-history of Pineus pinifoliae (Fitch) (Homoptera: Phylloxeridae) and its effect on white pine.—Can. Ent. 82, 117123.CrossRefGoogle Scholar
Banks, C. J. (1958). Effects of the ant Lasius niger (L.) on the behaviour and reproduction of the black bean aphid, Aphis fabae Scop.—Bull. ent. Res. 49, 701714.Google Scholar
Banks, C. J. (1962). Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae Scop. on bean plants.—Ann. appl. Biol. 50, 669679.CrossRefGoogle Scholar
Banks, C. J. (1963). Feeding and excretion behaviour of aphids.—Anim. Behav. 11, 604.Google Scholar
Banks, C. J. (1965). Aphid nutrition and reproduction.—Rep. Rothamsted exp. Stn. 1964, 299309.Google Scholar
Banks, C. J. & Macaulay, E. D. M. (1964). The feeding, growth and reproduction of Aphis fabae Scop. on Vicia faba under experimental conditions.—Ann. appl. Biol. 53, 229242.Google Scholar
Banks, C. J. & Macaulay, E. D. M. (1965). The ingestion of nitrogen and solid matter from Vicia fabae by Aphis fabae Scop.—Ann. appl. Biol. 55, 207218.Google Scholar
Banks, C. J. & Macaulay, E. D. M. (1970). Effects of varying the hostplant and environmental conditions on the feeding and reproduction of Aphis fabae.—Entomologia exp. appl. 13, 8596.Google Scholar
Banks, C. J., Macaulay, E. D. M. & Holman, J. (1968). Cannibalism and predation by aphids.—Nature, Lond. 218, 491.CrossRefGoogle Scholar
Banks, C. J. & Nixon, H. L. (1958). Effects of the ant, Lasius niger L., on the feeding and excretion of the bean aphid, Aphis fabae Scop.—J. exp. Biol. 35, 703711.CrossRefGoogle Scholar
Banks, C. J. & Nixon, H. L. (1959). The feeding and excretion rates of Aphis fabae Scop. on Vicia faba L.—Entomologia exp. appl. 2, 7781.Google Scholar
Bänziger, H. (1970). The piercing mechanism of the fruit-piercing moth Calpe (Calyptra) thalictri Bkh. (Noctuidae) with reference to the skin-piercing blood-sucking moth C. eustrigata Hmps.—Acta trop. 27, 5488.Google Scholar
Bänziger, H. (1971). Bloodsucking moths of Malaya.—Fauna Calif. 1, 316.Google Scholar
Baranyovits, F. (1953). Some aspects of the biology of armoured scale insects.—Endeavour 12, 202209.Google Scholar
Barker, J. S. & Tauber, O. E. (1951 a).Development of green peach aphid as affected by nutrient deficiencies in a host, nasturtium.—J. econ. Ent. 44, 125.Google Scholar
Barker, J. S. & Tauber, O. E. (1951 b).Fecundity of and plant injury by the pea aphid as influenced by nutritional changes in the garden pea.—J. econ. Ent. 44, 10101012.Google Scholar
Barnett, C. B. & Pirone, T. P. (1966).Stylet-borne virus: active probing by aphids not required for acquisition.—Science, N.Y. 154, 291292.Google Scholar
Baron, R. L. & Guthrie, F. E. (1960).A quantitative and qualitative study of sugars found in tobacco as affected by the green peach aphid, Myzus persicae, and its honeydew.—Ann. ent. Soc. Am. 53, 220228.Google Scholar
Baron, W. M. M. (1967).Physiological aspects of water and plant life.—146 pp. London, Heinemann.Google Scholar
Bar-Zeev, M. & Sterneberg, S. (1962).Factors affecting the feeding of fleas (Xenopsylla cheopis Rothsch.) through a membrane.—Entomologia exp. appl. 5, 6068.Google Scholar
Basden, R. (1968).The occurrence and composition of the sugars in the honeydew of Eriococcus coriaceus (Mask.).—Proc. Linn. Soc. N. S. W. 92, 222226.Google Scholar
Bath, J. E. & Chapman, R. K. (1966).Efficiency of three aphid species in the transmission of pea enation mosaic virus.—J. econ. Ent. 59, 631634.CrossRefGoogle Scholar
Baurant, R. (1968).Quelques observations dans la nature sur l'évolution printanière du Chermes tardus Dreyf.—Bull. Rech. Agron. Gembloux (N.S.) 3, 226233.Google Scholar
Behrendt, K. (1968).Das Abwandern parasitierter Aphiden von ihren Wirtspflanzen und eine Methode zu ihrer Erfassung.—Beitr. Ent. 18, 293298.Google Scholar
Beirne, B. P. (1970).Effects of precipitation on crop insects.—Can. Ent. 102, 13601373.Google Scholar
Bennettt, C. W. (1960). Sugar beet yellows disease in the United States.—Tech. Bull. U.S. Dep. Agr. no. 1218, 13.Google Scholar
Bennet-Clark, H. C. (1963 a).Negative pressures produced in the pharyngeal pump of the blood-sucking bug, Rhodnius prolixus.—J. exp. Biol. 40, 223229.Google Scholar
Bennet-Clark, H. C. (1963 b).The control of meal size in the blood-sucking bug, Rhodnius prolixus.—J. exp. Biol. 40, 741750.Google Scholar
Benwitz, G. (1956).Der Kopf von Corixa punctata Ill. (geoffroyi Leach) (Hemiptera Heteroptera).—Zool. Jb. (Anat.) 75, 311378.Google Scholar
Berlinski, K. (1965).Badania nad pobieranien pokarmu i wplywem roslin żywicielskich na mszycę trzmie1inowo-burakową-Aphis fabae Scop. (Homopt., Aphididae). (Studies on food intake and the effects of food plants on the bean aphid.—Aphis fabae).—Polskie Pismo ent. (B). 1965, 163168.Google Scholar
Bernardo, E. N. (1969).Effects of six host plants on the biology of the black bean aphid, Aphis craccivora Koch.—Philipp. Ent. 1, 287292.Google Scholar
Bhalla, O. P. & Robinson, A. G. (1966).Effect of three chemosterilants on the pea aphid fed on an artificial diet.—J. econ. Ent. 59, 378379.Google Scholar
Bhalla, O. P. & Robinson, A. G. (1968).Effects of chemosterilants and growth regulators on the pea aphid fed an artificial diet.—J. econ. Ent. 61, 552555.Google Scholar
Black, L. M. (1962). Some recent advances on leafhopper-borne viruses, pp. 19. In Maramorosch, K. (Ed.) Biological transmission of disease agents.—192 pp. New York, Academic Press.Google Scholar
Bliss, M. (1970). The feeding behavior and development of several forms of Eulachnus agilis (Kaltenbach) (Homoptera, Aphididae).—114 pp. Doctoral Thesis, Pennsylvania State Univ.—[Diss. Abstr. int. (B). 31, 5406–5407 (1971).]Google Scholar
Bodenheimer, F. S. & Swirski, E. (1957).The Aphidoidea of the Middle East.—378 pp. Jerusalem, Weizmann.Google Scholar
Bongers, J. (1969).Saugverhalten und Nahrungsaufnahme von Oncopeltus fasciatus Dallas (Heteroptera, Lygaeidae).—Oecologia. 3, 374389.Google Scholar
Bonnemaison, L. (1971).Action de la maturité de la plante-hôte et de l'effet de groupe sur la production des virginopares ailées chez le puceron du pois Acyrthosiphon pisum.—Ann. Soc. ent. Fr. (N.S.) 7, 889913.Google Scholar
Bonner, A. B. & Ford, J. B. (1972).Some effects of crowding on the biology of Megoura viciae.—Ann. appl. Biol. 71, 9198.Google Scholar
Bournoville, R. (1971).Données biologiques d'un biotype du puceron du pois, Acyrthosiphon pisum (Homoptera: Aphididae).—Can. Ent. 103, 876881.Google Scholar
Bradley, R. H. E. (1952).Studies on the aphid transmission of a strain of henbane mosaic virus.—Ann. appl. Biol. 39, 7897.Google Scholar
Bradley, R. H. E. (1953).Infectivity of aphids after several hours on tobacco infected with potato virus Y.—Nature, Lond. 171, 755756.Google Scholar
Bradley, R. H. E. (1954). Studies of the mechanism of transmission of potato virus Y by the green peach aphid, Myzus persicae (Sulz.) (Homoptera: Aphidae).—Can. J. Zool. 32, 6473.Google Scholar
Bradley, R. H. E. (1956). Effects of depth of stylet penetration on aphid transmission of potato virus Y.—Can. J. Microbiol. 2, 539547.CrossRefGoogle ScholarPubMed
Bradley, R. H. E. (1959). Loss of virus from the stylets of aphids.—Virology 8, 308318.CrossRefGoogle ScholarPubMed
Bradley, R. H. E. (1960). Effect of amputating stylets of mature apterous viviparae of Myzus persicae.—Nature, Lond. 188, 337338.Google Scholar
Bradley, R. H. E. (1961). Aphid transmission of potato virus Y diminished by electrostatic charge.—Virology 15, 379.Google Scholar
Bradley, R. H. E. (1962). Response of the aphid Myzus persicae (Sulz.) to some fluids applied to the mouth parts.—Can. Ent. 94, 707722.Google Scholar
Bradley, R. H. E. (1963 a). Are aphids apt to acquire potato virus Y, or transmit it, when probing plants through a membrane?Virology 21, 152155.Google Scholar
Bradley, R. H. E. (1963 b). Some ways in which a paraffin oil impedes aphid transmission of potato virus Y.—Can. J. Microbiol. 9, 369380.Google Scholar
Bradley, R. H. E. (1964). Aphid transmission of stylet-borne viruses. pp. 148173. In Corbett, M. K. & Sister, H. D. (Ed.) Plant virology.—527 pp. Gainesville, Florida Univ. Press.Google Scholar
Bradley, R. H. E. (1966). Which of an aphid's stylets carry transmissible virus?Virology 29, 396401.Google Scholar
Bradley, R. H. E. & Ganong, R. Y. (1955 a). Evidence that potato virus Y is carried near the tip of the stylets of the aphid vector Myzus persicae (Sulz.).—Can. J. Microbiol. 1, 775782.CrossRefGoogle ScholarPubMed
Bradley, R. H. E. & Ganong, R. Y. (1955 b). Some effects of formaldehyde on potato virus Y in vitro, and ability of aphids to transmit the virus when their stylets are treated with formaldehyde.—Can. J. Microbiol. 1, 783793.Google Scholar
Bradley, R. H. E. & Rideout, D. W. (1953). Comparative transmission of potato virus Y by four aphid species that infest potato.—Can. J. Zool. 31, 333341.Google Scholar
Bradley, R. H. E., Sylvester, E. S. & Wade, C. V. (1962). Note on the movements of the mandibular and maxillary stylets of the aphid, Myzus persicae (Sulzer).—Can. Ent. 94, 653654.Google Scholar
Bradley, R. H. E., Wade, C. V. & Wood, F. A. (1962). Aphid transmission of potato virus Y inhibited by oils.—Virology 18, 327328.Google Scholar
Bragdon, J. C. & Mittler, T. E. (1963). Differential utilization of amino-acids by Myzus persicae (Sulzer) fed on artificial diets.—Nature, Lond. 198, 209210.CrossRefGoogle Scholar
Brandes, E. W. (1923). Mechanics of inoculation with sugar-cane mosaic by insect vectors.—J. agric. Res. 23, 279283.Google Scholar
Branson, T. F. & Simpson, R. G. (1966). Effects of a nitrogen-deficient host and crowding on the corn leaf aphid.—J. econ. Ent. 59, 290293.Google Scholar
Briggs, J. B. (1965). The distribution, abundance, and genetic relationships of four strains of the rubus aphid (Amphorophora rubi (Kalt.)) in relation to raspberry breeding.—J. hort. Sci. 40, 109117.Google Scholar
Broadbent, L. (1949 a). Factors affecting the activity of alatae of the aphids Myzus persicae (Sulzer) and Brevicoryne brassicae (L.).—Ann. appl. Biol. 36, 4062.Google Scholar
Broadbent, L. (1949 b). The grouping and overwintering of Myzus persicae Sulz. on Prunus species.—Ann. appl. Biol. 36, 334340.Google Scholar
Broadbent, L. (1951). Aphid excretion.—Proc. R. ent. Soc. Lond. (A) 26, 97103.Google Scholar
Bronskill, J. F., Salkeld, E. H. & Friend, W. G. (1958). Anatomy, histology, and secretions of salivary glands of the large milkweed bug, Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae).—Can. J. Zool. 36, 961968.Google Scholar
Brown, W. (1955). On the physiology of parasitism in plants.—Ann. appl. Biol. 43, 325341.Google Scholar
Brusse, M. J. (1962). Alkaloid content and aphid infestation in Lupinus angustifolius L.—N. Z. Jl agric. Res. 5, 188189.Google Scholar
Buckley, N. G. & Pugh, G. J. F. (1971). Auxin production by phylloplane fungi.—Nature, Lond. 231, 332.Google Scholar
Burdon, E. R. (1908 a). The spruce-gall and larch-blight diseases caused by Chermes, and suggestions for their prevention.—J. econ. Biol. 2, 113.Google Scholar
Burdon, E. R. (1908 b). Some critical observations on the European species of the genus Chermes.—J. econ. Biol. 2, 119148.Google Scholar
Burk, L. G. & Stewart, P. A. (1969). Resistance of Nicotiana species to the green peach aphid.—J. econ. Ent. 62, 11151117.Google Scholar
Büsgen, M. (1891). Der Honigtau. Biologische Studien an Pflanzen und Pflanzenläusen.—Jena Z. Naturw. 25, 339428.Google Scholar
Butler, C. G. (1938). On the ecology of Aleurodes brassicaeü Walk. (Hemiptera).—Trans. R. ent. Soc. Lond. 87, 291311.Google Scholar
Butler, G. D. (1968). Sugar for the survival of Lygus hesperus on alfalfa.—J. econ. Ent. 61, 854855.Google Scholar
Carle, P. & Moutous, G. (1965). Observations sur le mode de nutrition sur vigne de quatre espèces de cicadelles.—Ann. Épiphyt. 16, 333354.Google Scholar
Carlisle, D. B. & Ellis, P. E. (1968). Bracken and locust ecdysones: their effects on molting in the desert locust.—Science, N.Y. 159, 14721474.Google Scholar
Carlisle, D. B., Ellis, P. E. & Osborne, D. J. (1969). Effects of plant growth regulators on locusts and cotton stainer bugs.—J. Sci. Fd Agric. 20, 391393.CrossRefGoogle Scholar
Carlson, O. V. & Hibbs, E. T. (1970). Oviposition by Empoasca fabae (Homoptera: Cicadellidae).—Ann. ent. Soc. Am. 63, 516519.Google Scholar
Carter, W. (1939). Injuries to plants caused by insect toxins.—Bot. Rev. 5, 273326.Google Scholar
Carter, W. (1962). Insects in relation to plant disease.—705 pp. New York, Interscience.Google Scholar
Cartier, J. J. & Auclair, J. L. (1964). Pea aphid behaviour: colour preference on a chemical diet.—Can. Ent. 96, 12401243.Google Scholar
Cartier, J. J. & Auclair, J. L. (1965). Effets des couleurs sur le comportement de diverses races du puceron du pois, Acyrthosiphon pisum (Harris), en élevage sur un régime nutritif de composition chimique connue.—Int. Congr. Ent. (1964), 414.Google Scholar
Cavalloro, R. (1961). Indagini condotte con 32P sulla nutrizione del Myzodes persicae, Sulzer.—Il Tabacco, Roma 65, 287297.Google Scholar
Celino, M. S. (1940). Experimental transmission of the mosaic of abacá, or manila hemp plant (Musa textilis Née).—Philipp. Agric. 29, 379403.Google Scholar
Chalfant, R. B. & Chapman, R. K. (1962). Transmission of cabbage viruses A and B by the cabbage aphid and the green peach aphid.—J. econ. Ent. 55, 584590.Google Scholar
Chapman, R. F. (1969). The insects. Structure and function.—819 pp. London, English Univ. Press.Google Scholar
Chatters, R. M. & Schlehuber, A. M. (1951). Mechanics of feeding of the greenbug (Toxoptera graminum Rond.) on Hordeum, Avena, and Triticum.—Tech. Bull. Okla agric. Exp. Stn. T-40, 118.Google Scholar
Chen, S. H. & Zia, Y. (1943). Observations on the orientation of some aphids in feeding.—Sinensia, Shanghai 14, 4143.Google Scholar
Chen, T. A. & Mai, W. F. (1965). The feeding of Trichodorus christiei on individually isolated corn root cells.—Phytopathology 55, 128.Google Scholar
Chrystal, R. N. (1925). The genus Dreyfusia (Order Hemiptera, Family Chermesidae) in Britain, and its relation to the silver fir.—Phil. Trans. R. Soc. (B) 214, 2961.Google Scholar
Cockbain, A. J. (1961). Low temperature thresholds for flight in Aphis fabae Scop.—Entomologia exp. appl. 4, 211219.Google Scholar
Cockbain, A. J. (1963). Probing and feeding behaviour of alate aphids in relation to the transmission of some plant viruses.—Anim. Behav. 11, 603.Google Scholar
Cockbain, A. J. & Heathcote, G. D. (1965). Transmission of sugar beet viruses in relation to the feeding, probing and flight activity of alate aphids.—Int. Congr. Ent. (1964), 521523.Google Scholar
Cognetti, G. (1965). Parthenogenesis in aphids.—Int. Congr. Ent. (1964), 250.Google Scholar
Comes, O. (1916). Prophylaxis in vegetable pathology.—Int. Rev. Sci. Pract. Agric. 7, 12051211.Google Scholar
Cousin, M. T. & Grison, C. (1969). Note concernant l'action d'une huile minérale sur la transmission de la mosaïque commune du pois (Pea virus 2) par Acyrthosiphum pisi.—Ann. Phytopathol. 1, 315318.Google Scholar
Cram, W. J. (1972). The initiation of developmental drifts in excised plant tissues.—Aust. J. biol. Sci. 25, 855859.Google Scholar
Crane, G. L. & Calpouzos, L. (1969). Suppression of symptoms of sugar beet virus yellows by mineral oil.—Phytopathology 59, 697698.Google Scholar
Crane, P. S. (1970). The feeding behavior of the blue-green sharpshooter, Hordnia circellata (Baker) (Homoptera: Cicadellidae).—Diss. Abstr. int. (B) 31, 54075408 (1971).Google Scholar
Cress, D. C. & Chada, H. L. (1971). Development of a synthetic diet for the greenbug, Schizaphis graminum. 2. Greenbug development as affected by zinc, iron, man ganese, and copper.—Ann. ent. Soc. Am. 64, 12401244.Google Scholar
Cunningham, V. D. & Schulz, J. T. (1963). Transmission of virus Y by instars of Myzus persicae (Homoptera: Aphidae).—Ann. ent. Soc. Am. 56, 334336.Google Scholar
Dadd, R. H. (1967). Improvement of synthetic diet for the aphid Myzus persicae using plant juices, nucleic acids, or trace metals.—J. Insect Physiol. 13, 763778.CrossRefGoogle ScholarPubMed
Dadd, R. H. & Krieger, D. L. (1967). Continuous rearing of aphids of the Aphis fabae complex on sterile synthetic diet.—J. econ. Ent. 60, 15121514.Google Scholar
Dadd, R. H. & Krieger, D. L. (1968). Dietary amino acid requirements of the aphid, Myzus persicae.—J. Insect Physiol. 14, 741764.Google Scholar
Dadd, R. H., Krieger, D. L. & Mittler, T. E. (1967). Studies on the artificial feeding of the aphid Myzus persicae (Sulzer)—IV. Requirements for water-soluble vitamins and ascorbic acid.—J. Insect Physiol. 13, 249272.Google Scholar
Dadd, R. H. & Mittler, T. E. (1966). Permanent culture of an aphid on a totally synthetic diet.—Experientia 22, 832833.CrossRefGoogle ScholarPubMed
Daniels, N. E. & Porter, K. B. (1956). Greenbug damage to winter wheat as affected by preceding crop.—J. econ. Ent. 49, 600602.Google Scholar
Danneel, I. (1967). Kurzzeitversuche zur Nahrungswahl von Aphis fabae Scop. (Homoptera, Aphididae).—Z. angew. Zool. 54, 181182.Google Scholar
Danneel, I. (1969 a). Untersuchungen zur Nahrungsaufnahme und Phosphatausscheidung durch Aphis fabae Scop. (Insecta, Homoptera, Aphididae) mit Hilfe der Tracer-Methode. I. Untersuchungen über die Faktoren, die die Nahrungsaufnahme von Aphis fabae Scop. bei künstlicher Fütterung durch Membranen beeinflussen.—Z. angew. Zool. 56, 229251.Google Scholar
Danneel, I. (1969 b). Untersuchungen zur Nahrungsaufnahme und Phosphatausscheidung durch Aphis fabae Scop. (Insecta, Homoptera, Aphididae) mit Hilfe der Tracer-Methode. II. Untersuchungen zur Aufnahme und Ausscheidung von Radio-phosphat durch Aphis fabae Scop. verbunden mit einer Berechnung der Strahlenbelastung.—Z. angew. Zool. 56, 465488.Google Scholar
Davey, K. G. (1962). The nervous pathway involved in the release by feeding of a pharmacologically active factor from the corpus cardiacum of Periplaneta.—J. Insect Physiol. 8, 579583.Google Scholar
Davidson, J. (1913). The structure and biology of Schizoneura lanigera Hausmann or woolly aphis of the apple tree. Part I.—The apterous viviparous female.—Q. Jl microsc. Sci. 58, 653701.Google Scholar
Davidson, J. (1914 a). On the mouth parts and mechanism of suction in Schizoneura lanigera Hausmann.—J. Linn. Soc. (Zool.) 32, 307329.Google Scholar
Davidson, J. (1914 b). The host plants and habits of Aphis rumicis Linn., with some observations on the migration of, and infestation of, plants by aphides.—Ann. appl. Biol. 1, 118141.Google Scholar
Davidson, J. (1921). Biological studies of Aphis rumicis Linn. 1746.—Ann. appl. Biol. 8, 5165.Google Scholar
Davidson, J. (1923). Biological studies of Aphis rumicis Linn. The penetration of plant tissues and the source of the food supply of aphids.—Ann. appl. Biol. 10, 3554.Google Scholar
Davidson, J. (1925). Biological studies of Aphis rumicis Linn. Factors affecting the infestation of Vicia faba with Aphis rumicis.—Ann. appl. Biol. 12, 472507.Google Scholar
Davies, W. M. (1936). Studies on the aphides infesting the potato crop. V. Laboratory experiments on the effect of wind velocity on the flight of Myzus persicae Sulz.—Ann. appl. Biol. 23, 401408.Google Scholar
Davis, N. T. & Usinger, R. L. (1970). The biology and relationships of the Joppeicidae (Heteroptera).—Ann. ent. Soc. Am. 63, 577587.CrossRefGoogle Scholar
Day, M. F. (1949). The occurrence of mucoid substances in insects.—Aust. J. sci. Res. (B) 2, 421427.Google Scholar
Day, M. F. (1951). The mechanism of secretion by the salivary gland of the cockroach Periplaneta americana (L.).—Aust. J. sci. Res. (B) 4, 136143.Google Scholar
Day, M. F. & Bennetts, M. J. (1954). A review of problems of specificity in arthropod vectors of plant and animal viruses.—172 pp. Canberra, Div. Ent., CSIRO.Google Scholar
Day, M. F. & Irzykiewicz, H. (1953). Feeding behaviour of the aphids Myzus persicae and Brevicoryne brassicae studied with radiophosphorus.—Aust. J. biol. Sci. 6, 98108.Google Scholar
Day, M. F. & Irzykiewicz, H. (1954). On the mechanism of transmission of non-persistent phytopathogenic viruses by aphids.—Aust. J. biol. Sci. 7, 251273.Google Scholar
Day, M. F., Irzykiewicz, H. & McKinnon, A. (1952). Observations on the feeding of the virus vector Orosius argentatus (Evans), and comparisons with certain other jassids.—Aust. J. sci. Res. (B) 5, 128142.Google Scholar
Day, M. F. & McKinnon, A. (1951). A study of some aspects of the feeding of the jassid Orosius.—Aust. J. sci. Res. (B) 4, 125135.Google Scholar
Day, M. F. & Venables, D. G. (1961). The transmission of cauliflower mosaic virus by aphids.—Aust. J. biol. Sci. 14, 187197.Google Scholar
Dedio, W. & Clark, K. W. (1971). Influence of cytokinins on isoflavone and anthocyanin synthesis in red clover seedlings.—Pestic. Sci. 2, 6568.Google Scholar
Dehn, M. von (1961). Untersuchungen zur Ernährungsphysiologie der Aphiden. Die Aminosäuren und Zucker im Siebröhrensaft einiger Krautgewächsarten und im Honigtau ihrer Schmarotzer.—Z. vergl. Physiol. 45, 88108.Google Scholar
DeMeillon, B. & Golding, L. (1946). Nutritional studies on blood-sucking arthropods.—Nature, Lond. 158, 269270.Google Scholar
Denisova, T. V. (1965). The phenolic complex of vine roots infested by Phylloxera as a factor in resistance [In Russian].—Vest. sel'khoz. Nauki Mosk. 10, 114118. (From Rev. appl. Ent. (A) 53, 626).Google Scholar
Dennis, C. J. (1964). Observations on treehopper behavior (Homoptera, Membracidae).—Am. Midl. Nat. 71, 452459.Google Scholar
Dethier, V. G. (1966). Feeding behaviour.—Symp. R. ent. Soc. Lond. 3, 4658.Google Scholar
Dethier, V. G. (1970). Some general considerations of insects' responses to the chemicals in food plants. pp. 2128. In Wood, D. L., Silverstein, R. M. and Nakajima, M. (Eds.) Control of insect behavior by natural products.—345 pp. New York, Academic Press.Google Scholar
Devine, T. L., Venard, C. E. & Myser, W. C. (1965). Measurement of salivation by Aedes aegypti (L.) feeding on a living host.—J. Insect Physiol. 11, 347353.Google Scholar
Dick, J. (1969). The mealybugs of sugar cane. pp. 343365. In Williams, J. R., Metcalfe, I. R., Mungomery, R. W. and Mathes, R. (Eds.) Pests of sugar cane.—568 pp. Amsterdam, Elsevier.Google Scholar
Dickson, R. C., Laird, E. F. & Pesho, G. R. (1956). The spotted alfalfa aphid. (Yellow clover aphid on alfalfa).—Hilgardia 24, (1955), 93118.Google Scholar
Dickson, R. C., Swift, J. E., Anderson, L. D. & Middleton, J. T. (1949). Insect vectors of cantaloupe mosaic in California's desert valleys.—J. econ. Ent. 42, 770774.Google Scholar
Diehl, S. G. & Chatters, R. M. (1956). Studies on the mechanics of feeding of the spotted alfalfa aphid on alfalfa.—J. econ. Ent. 49, 589591.Google Scholar
Dieuzeide, R. (1928). Contribution a l'étude des néoplasmes végétaux. Le role des pucerons en phytopathologie.—Act. Soc. Linn. Bordeaux 81, 1243.Google Scholar
Dixon, A. F. G. (1966). The effect of population density and nutritive status of the host on the summer reproductive activity of the sycamore aphid, Drepanosiphum platanoides (Schr.)J. Anim. Ecol. 35, 105112.Google Scholar
Dixon, A. F. G. (1969). Population dynamics of the sycamore aphid Drepanosiphum platanoides (Schr.) (Hemiptera: Aphididae): migratory and trivial flight activity.—J. Anim. Ecol. 38, 585606.Google Scholar
Dixon, A. F. G. (1970). Quality and availability of food for a sycamore aphid population.—Symp. Br. Ecol. Soc. 10, 271287.Google Scholar
Dixon, A. F. G. (1971 a). The role of aphids in wood formation. I. The effect of the sycamore aphid, Drepanosiphum platanoides (Schr.) (Aphididae), on the growth of sycamore, Acer pseudoplatanus (L.).—J. appl. Ecol. 8, 165179.Google Scholar
Dixon, A. F. G. (1971 b). The role of aphids in wood formation. II. The effect of the lime aphid, Eucallipterus tiliae L. (Aphididae), on the growth of lime, Tilia × vulgaris Hayne.—J. appl. Ecol. 8, 393399.Google Scholar
Dixon, A. F. G. (1971 c). The “interval timer” and photoperiod in the determination of parthenogenetic and sexual morphs in the aphid, Drepanosiphum platanoides.—J. Insect Physiol. 17, 251260.Google Scholar
Dixon, A. F. G. (1971 d). The life-cycle and host preferences of the bird cherry-oat aphid, Rhopalosiphum padi L., and their bearing on the theories of host-alternation in aphids.—Ann. appl. Biol. 68, 135147.Google Scholar
Dixon, A. F. G. (1972 a). The “interval timer ”, photoperiod and temperature in the seasonal development of parthenogenetic and sexual morphs in the lime aphid, Eucallipterus tiliae L.—Oecologia 9, 301310.Google Scholar
Dixon, A. F. G. (1972 b). Crowding and nutrition in the induction of macropterous alatae in Drepanosiphum dixoni.—J. Insect Physiol. 18, 459464.Google Scholar
Dixon, A. F. G., Burns, M. D. & Wangboonkong, S. (1968). Migration in aphids: response to current adversity.—Nature, Lond. 220, 13371338.Google Scholar
Dixon, A. F. G. & McKay, S. (1970). Aggregation in the sycamore aphid Drepanosiphum platanoides (Schr.) (Hemiptera: Aphididae) and its relevance to the regulation of population growth.—J. Anim. Ecol. 39, 439454.Google Scholar
Doke, N. & Hirai, T. (1970). Effects of tobacco mosaic virus infection on photosynthetic CO 2 fixation and 14CO 2 incorporation into protein in tobacco leaves.—Virology 42, 6877.Google Scholar
Dry, W. W. & Taylor, L. R. (1970). Light and temperature thresholds for take-off by aphids.—J. Anim. Ecol. 39, 493504.Google Scholar
Duffus, J. E. (1969). Membrane feeding used in determining the properties of beet western yellows virus.—Phytopathology 59, 16681669.Google Scholar
Duffus, J. E. & Gold, A. H. (1965). Transmission of beet western yellows virus by aphids feeding through a membrane.—Virology 27, 388390.Google Scholar
Duffus, J. E. & Gold, A. H. (1967). Relationship of tracer-measured aphid feeding to acquisition of beet western yellows virus and to feeding inhibitors in plant extracts.—Phytopathology 57, 12371241.Google Scholar
Dunn, J. A. (1960). Varietal resistance of lettuce to attack by the lettuce root aphid, Pemphigus bursarius (L.).—Ann. appl. Biol. 48, 764770.Google Scholar
Dunn, J. A. (1970). The susceptibility of varieties of carrot to attack by the aphid, Cavariella aegopodii (Scop.).—Ann. appl. Biol. 66, 301312.Google Scholar
Duspiva, F. (1954). Weitere Untersuchungen über stoffwechsel-physiologische Beziehungen zwischen Rhynchoten und ihren Wirtspflanzen.—Mitt. biol. Reichsanst. Ld- u. Forstw. 80, 155162.Google Scholar
Dutrecq, A. & Vanderveken, J. (1969). Rémanence de l'effet inhibiteur d'une huile minérale a l'égard de la transmission aphidienne du virus de la jaunisse de la betterave.—Bull. Rech. agron. Gembloux (N.S.) 4, 6675.Google Scholar
Dykstra, T. P. & Whitaker, W. C. (1938). Experiments on the transmission of potato viruses by vectors.—J. agric. Res. 57, 319334.Google Scholar
Dyte, C. E. (1967). Possible new approach to the chemical control of plant feeding insects.—Nature, Lond. 216, 298Google Scholar
Dyte, C. E. (1969). Evolutionary aspects of insecticide selectivity.—Proceedings 5th British Insecticide and Fungicide Conference,393397.Google Scholar
Eastop, V. F. & Banks, C. J. (1970). Suspected insecticide resistance mechanism in the peach-potato aphid.—Nature, Lond. 225, 970971.Google Scholar
Edwards, J. S. (1962). Observations on the development and predatory habit of two Reduviid Heteroptera, Rhinocoris carmelita Stål. and Platymeris rhadamanthus Gerst.—Proc. R. ent. Soc. Lond. (A) 37, 8998.Google Scholar
Edwards, J. S. (1965). Some observations on the solid components of the gut contents of aphids.—Int. Congr. Ent. 1964, 173.Google Scholar
Edwards, J. S. (1966). Defence by smear: supercooling in the cornicle wax of aphids.—Nature, Lond. 211, 7374.Google Scholar
Ehrenhardt, H. (1939). Experimentelle Untersuchungen und Freilandbeobachtungen über den Einfluss von Kälte und Eis auf die Blutlaus.—Arb. physiol. angew. Ent. Berl. 6, 257285.Google Scholar
Ehrhardt, P. (1961). Zur Nahrungsaufnahme von Megoura viciae Buckt., einer phloemsaugenden Aphide (Homoptera, Rhynchota).—Experientia 17, 461462.Google Scholar
Ehrhardt, P. (1963). Zum Problem der Nahrungspflanzenwahl der Aphiden.—Experientia 19, 204205.Google Scholar
Ehrhardt, P. (1965). Speicherung anorganischer Substanzen in den Mitteldarmzellen von Aphis fabae Scop. und ihre Bedeutung für die Ernährung.—Z. vergl. Physiol. 50, 293312.Google Scholar
Ehrhardt, P. (1969). Die Rolle von Methionin, Cystein, Cystin und Sulfat bei der künstlichen Ernährung von Neomyzus (Aulacorthum) circumflexus Buckt. (Aphidae, Homoptera, Insecta).—Biol. Zbl. 88, 335348.Google Scholar
Eichhorn, O. (1969). Natürliche Verbreitungsareale und Einschleppungsgebiete der Weisstannen-Wolläuse (Gattung Dreyfusia) und die Möglichkeiten ihrer biologischen Bekämpfung.—Z. angew. Ent. 63, 113131.Google Scholar
Eidt, D. C. & Little, C. H. A. (1968). Insect control by artificially prolonging plant dormancy —a new approach.—Can. Ent. 100, 12781279.Google Scholar
Eidt, D. C. & Little, C. H. A. (1970). Insect control through induced host-insect asynchrony: a progress report.—J. econ. Ent. 63, 19661968.Google Scholar
Ekblom, T. (1926). Morphological and biological studies of the Swedish families of Hemiptera Heteroptera. Part 1.—Zool. Bidr. Upps. 10, 31177.Google Scholar
Ekblom, T. (1930). Morphological and biological studies of the Swedish families of Hemiptera Heteroptera. Part 2.—Zool. Bidr. Upps. 12, 113150.Google Scholar
Elson, J. A. (1937). A comparative study of Hemiptera.—Ann. ent. Soc. Am. 30, 579597.Google Scholar
Emden, H. F. van (1967). An increase in the longevity of adult Aphis fabae fed artificially through parafilm membranes on liquids under pressure.—Entomologia exp. appl. 10, 166170.Google Scholar
Emden, H. F. van (1969). Plant resistance to Myzus persicae induced by a plant regulator and measured by aphid relative growth rate.—Entomologia exp. appl. 12, 125131.Google Scholar
Emden, H. F.van (1971). Plant insect relationships in relation to control.—PANS Pest. Artic. News Summ. 17, 251252.Google Scholar
Emden, H. F.van (1972). Aphid technology.—344 pp. London, Academic Press.Google Scholar
Emden, H. F.van & Bashford, M. A. (1969). A comparison of the reproduction of Brevicoryne brassicae and Myzus persicae in relation to soluble nitrogen concentration and leaf age (leaf position) in the brussels sprout plant.—Entomologia exp. appl. 12, 351364.Google Scholar
Emden, H. F. van, Eastop, V. F., Hughes, R. D. & Way, M. J. (1969). The ecology of Myzus persicae.—A. Rev. Ent. 14, 197270.Google Scholar
Emery, W. T. (1946). Temporary immunity in alfalfa ordinarily susceptible to attack by the pea aphid.—J. agric. Res. 73, 3343.Google Scholar
Entwistle, P. F. & Longworth, J. F. (1963). The relationships between cacao viruses and their vectors: the feeding behaviour of three mealybug (Homoptera: Pseudococcidae) species.—Ann. appl. Biol. 52, 387391.Google Scholar
Esau, C. (1961). Plants, viruses, and insects.—110 pp. Cambridge, Mass., Harvard Univ. Press.Google Scholar
Esau, K., Namba, R. & Rasa, E. A. (1961). Studies on penetration of sugar beet leaves by stylets of Myzus persicae.—Hilgardia 30, 517529.Google Scholar
Essig, E. O. (1942). College entomology.—900 pp. New York, Macmillan.Google Scholar
Evans, J. W. (1938). The morphology of the head of Homoptera.—Pap. Proc. R. Soc. Tasm. 1, 120.Google Scholar
Evans, J. W. (1963). The phylogeny of the Homoptera.—A. Rev. Ent. 8, 7194.Google Scholar
Feir, D. & Beck, S. D. (1963). Feeding behavior of the large milkweed bug, Oncopelius fasciatus.—Ann. ent. Soc. Am. 56, 224229.Google Scholar
Feir, D. & Suen, J. S. (1971). Cardenolides in the milkweed plant and feeding by the milkweed bug.—Ann. ent. Soc. Am. 64, 11731174.Google Scholar
Fennah, R. G. (1969). Damage to sugar cane by Fulgoroidea and related insects in relation to the metabolic state of the host plant. pp. 367389. In Williams, J. R., Metcalfe, J. R., Mungomery, R. W. & Mathes, R. (Eds.) Pests of sugar cane.—568 pp. Amsterdam, Elsevier.Google Scholar
Fife, J. M. (1956). Changes in the concentration of amino acids in the leaves of sugar beet plants affected with curly top.—J. Am. Soc. Sug. Beet Technol. 9, 207211.Google Scholar
Fife, J. M. (1961). Changes in the concentration of amino acids in sugar beet plants induced by virus yellows.—J. Am. Soc. Sug. Beet Technol. 11, 327333.Google Scholar
Fife, J. M. & Frampton, V. L. (1936). The pH gradient extending from the phloem into the parenchyma of the sugar beet and its relation to the feeding behavior of Eutettix tenellus.—J. agric. Res. 53, 581593.Google Scholar
Flemion, F., Miller, L. P. & Weed, R. M. (1952). An estimate of the quantity of oral secretion deposited by Lygus when feeding on bean tissue.—Contr. Boyce Thompson Inst. Pl. Res. 16, 429433.Google Scholar
Flutter, H. J. de & Ankersmit, G. W. (1948). Gegevens betreffende de aantasting van bonen (Phaseolus vulgaris L.) door de zwarte bonenluis (Aphis (Doralis) fabae Scop.).—Tijdschr. PlZiekt. 54, 113 (Observations on the infestation of beans by A. fabae).Google Scholar
Forbes, A. R. (1966). Electron microscope evidence for nerves in the mandibular stylets of the green peach aphid.—Nature, Lond. 212, 726.Google Scholar
Forbes, A. R. (1969). The stylets of the green peach aphid, Myzus persicae. (Homoptera: Aphididae.).—Can. Ent. 101, 3141.Google Scholar
Forbes, A. R. (1972). Innervation of the stylets of the pear psylla, Psylla pyricola (Homoptera: Psyllidae), and the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae).—J. ent. Soc. Br. Columbia 69, 2730.Google Scholar
Forbes, A. R. & MacCarthy, H. R. (1969). Morphology of the Homoptera, with emphasis on virus vectors. pp.211234. In Maramorosch, K. (Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Forbes, A. R. & Mullick, D. B. (1970). The stylets of the balsam woolly aphid, Adelges piceae (Homoptera: Adelgidae).—Can. Ent. 102, 10741082.Google Scholar
Forrest, J. M. S. (1970). The effect of maternal and larval experience on morph determination in Dysaphis devecta.—J. Insect Physiol. 16, 22812292.Google Scholar
Forrest, J. M. S. (1971). The growth of Aphis fabae as an indicator of the nutritional advantage of galling to the apple aphid Dysaphis devecta.—Entomologia exp. appl. 14, 477483.Google Scholar
Forrest, J. M. S. & Noordink, J. P. W. (1971). Translocation and subsequent uptake by aphids of 32P introduced into plants by radioactive aphids.—Entomologia exp. appl. 14, 133134.Google Scholar
Franke, W. (1969). Ectodesmata in relation to binding sites for inorganic ions and urea on isolated cuticular membrane surfaces.—Am. J. Bot. 56, 432435.CrossRefGoogle ScholarPubMed
Franke, W. (1970). Ectodesmata and the cuticular penetration of leaves.—Pestic. Sci. 1. 164167.Google Scholar
Friend, W. G. (1958). Nutritional requirements of phytophagous insects.—A. Rev. Ent. 3, 5774.CrossRefGoogle Scholar
Friend, W. G. & Smith, J. J. B. (1971 a). Feeding in Rhodnius prolixus: mouthpart activity and salivation, and their correlation with changes of electrical resistance.—J. Insect Physiol. 17, 233243.Google Scholar
Friend, W. G. & Smith, J. J. B. (1971 b). Feeding in Rhodnius prolixus: potencies of nucleoside phosphates in initiating gorging.—J. Insect Physiol. 17, 13151320.Google Scholar
Galun, R., Avi-dor, Y. & Bar-Zeev, M. (1963). Feeding response in Aëdes aegypti: stimulation by adenosine triphosphate.—Science, N.Y. 142, 16741675.Google Scholar
Gamez, R. & Watson, M. (1964). Failure of anaesthetized aphids to acquire or transmit henbane mosaic virus when their stylets were artificially inserted into leaves of infected or healthy tobacco plants.—Virology 22, 292295.Google Scholar
Geiger, H. R. & Mitchell, H. K. (1966). Salivary gland function in phenol oxidase production in Drosophila melanogaster.—J. Insect Physiol. 12, 747754.Google Scholar
Gelperin, A. (1971). Abdominal sensory neurons providing negative feedback to the feeding behavior of the blowfly.—Z. vergl. Physiol. 72, 1731.Google Scholar
Gelperin, A. (1972). Neural control systems underlying insect feeding behavior.—Am. Zool. 12, 489496.Google Scholar
Gibbs, A. J. (1960). Studies on the importance of wild beet as a source of pathogens for the sugar-beet crop.—Ann. appl. Biol. 48, 771779.Google Scholar
Gibson, R. W. (1971 a). Factors influencing the distribution of aphids on potato plants.—Rep. agric. hort. Res. Stn Univ. Bristol 1970, 103104.Google Scholar
Gibson, R. W. (1971 b). Glandular hairs providing resistance to aphids in certain wild potato species.—Ann. appl. Biol. 68, 113119.Google Scholar
Gibson, R. W. (1971 c). The resistance of three Solanum species to Myzus persicae, Macro siphum euphorbiae and Aulacorthum solani (Aphididae: Homoptera).—Ann. appl. Biol. 68, 245251.Google Scholar
Gibson, R. W. (1971 d). Climatic factors restricting the distribution of the aphid Rhopalosiphoninus latysiphon to the subterranean parts of field potato plants.—Ann. appl. Biol. 69, 8996.Google Scholar
Gibson, R. W. (1972). The distribution of aphids on potato leaves in relation to vein size.—Entomologia exp. appl. 15, 213223.Google Scholar
Gill, C. C. (1970). Aphid nymphs transmit an isolate of barley yellow dwarf virus more efficiently than do adults.—Phytopathology 60, 17471752.Google Scholar
Gillett, J. D. & Wiggleworth, V. B. (1932). The climbing organ of an insect, Rhodnius prolixus (Hemiptera: Reduviidae).—Proc. R. Soc. (B) 111, 364376.Google Scholar
Gilmour, D. (1965). The metabolism of insects.—195 pp. Edinburgh, Oliver & Boyd.Google Scholar
Gollmick, F. & Schilder, F. A. (1941). Histologie und Morphologie der Rebenblätter in ihren Beziehungen zum Reblausbefall.—Mitt. biol. Reichsanst. Ld-u. Forstw. 65, 5759.Google Scholar
Goodchild, A. J. P. (1966). Evolution of the alimentary canal in the Hemiptera.—Biol. Rev. 41, 97140.Google Scholar
Goyal, S. P. & Goyal, A. N. (1970). On the growth patterns of Phylloxera gall and normal grape stem single cell clones in tissue culture (Part II).—Proc. Indian Acad. Sci. 36B, 305310.Google Scholar
Greenbank, D.O. (1970). Climate and the ecology of the balsam woolly aphid.—Can. Ent. 102, 546578.Google Scholar
Guss, P. L. & Branson, T. F. (1972). The use of 75Se in feeding studies with the corn leaf aphid (Hemiptera (Homoptera) Aphididae).—Ann. ent. Soc. Am. 65, 303306.Google Scholar
Guthrie, F. E., Campbell, W. V. & Baron, R. L. (1962). Feeding sites of the green peach aphid with respect to its adaptation to tobacco.—Ann. ent. Soc. Am. 55, 4246.Google Scholar
Gutierrez, A. P. (1970). Studies on host selection and host specificity of the aphid hyperparasite Charips victrix (Hymenoptera: Cynipidae). 6. Description of sensory structures and a synopsis of host selection and host specificity.—Ann. ent. Soc. Am. 63, 17051709.Google Scholar
Gutierrez, A. P., Morgan, D. J. & Havenstein, D. E. (1971). The ecology of Aphis craccivora Koch and subterranean clover stunt virus I. The phenology of aphid populations and the epidemiology of virus in pastures in south east Australia.—J. appl. Ecol. 8, 699721.Google Scholar
Hackerott, H. L., Harvey, T. L. & Ross, W. M. (1969). Greenbug resistance in sorghums.—Crop Sci. 9, 656658.Google Scholar
Hagen, K. S., Sawall, E. F. Jr & Tassan, R. L. (1971). The use of food sprays to increase effectiveness of entomophagous insects.—Proceedings 2nd Tall Timbers ConferenceTallahassee.Tall Timbers Res. Stn, 5981.Google Scholar
Halgren, L. A. (1970). Flight behavior of the greenbug, Schizaphis graminum (Homoptera: Aphididae) in the laboratory.—Ann. ent. Soc. Am. 63, 938942.Google Scholar
Halimie, M. A. & Ford, J. B. (1972). Feeding and the uptake of phosphamidon by two strains of Myzus persicae (Sulz.) on radish plants.—Ann. appl. Biol. 70, 169174.Google Scholar
Hamilton, M. A. (1935). Further experiments on the artificial feeding of Myzus persicae (Sulz.).—Ann. appl. Biol. 22, 243258.Google Scholar
Hamlyn, B. M. G. (1953). Quantitative studies on the transmission of cabbage black ring spot virus by Myzus persicae (Sulz.).—Ann. appl. Biol. 40, 393402.Google Scholar
Hanna, A. D. (1950). The effect of rainfall on the cotton jassid, Empoasca lybica (De Berg.) in the Gezira, Anglo-Egyptian Sudan.—Bull. ent. Res. 41, 359369.Google Scholar
Harrewijn, P. (1970). Reproduction of the aphid Myzus persicae related to the mineral nutrition of potato plants.—Entomologia exp. appl. 13, 307319.Google Scholar
Harrewijn, P. & Noordink, J. P. W. (1971). Taste perception of Myzus persicae in relation to food uptake and developmental processes.—Entomologia exp. appl. 14, 413419.Google Scholar
Harvey, T. L. & Hackerott, H. L. (1969). Recognition of a greenbug biotype injurious to sorghum.—J. econ. Ent. 62, 776779.Google Scholar
Harvey, T. L., Hackerott, H. L. & Sorensen, E. L. (1971). Pea aphid injury to resistant and susceptible alfalfa in the field.—J. econ. Ent. 64, 513517.Google Scholar
Heathcote, G. D. (1968). Protection of sugar beet seedlings against aphids and viruses by cover crops and aluminium foil.—Pl. Path. 17, 158161.Google Scholar
Heathcote, G. D. & Cockbain, A. J. (1964). Transmission of beet yellows virus by alate and apterous aphids.—Ann. appl. Biol. 53, 259266.Google Scholar
Heathcote, G. D., Dunning, R. A. & Wolfe, M. D. (1965). Aphids on sugar beet and some weeds in England, and notes on weeds as a source of beet viruses.—Pl. Path. 14, 110.Google Scholar
Heinze, K. (1959). Über das Verhalten unbeständiger phytopathogener Viren bei der Über tragung durch Blattläuse.—Phytopath. Z. 36, 131145.Google Scholar
Heinze, K. (1963). Über Virusübertragungen mit Blattläusen auf landwirtschaftliche Kulturpflanzen unter Berücksichtigung verschiedener Stadien des Entwicklungszyklus.—NachrBl. dt. PflSchutzdienst, Berl. 15, 59.Google Scholar
Hennig, E. (1959). Untersuchungen am Saugakt von Aphis fabae Scop. mit 32P. senschaf ten 46, 410411.Google Scholar
Hennig, E. (1962). Neuere Untersuchungen über die Bedeutung der sogenannten Probesaugstiche bei Aphiden.—Z. PflKrankh.PflPath. PflSchutz. 69, 321330.Google Scholar
Hennig, E. (1963). Zum Probieren oder sogenannten Probesaugen der schwarzen Bohnenlaus (Aphis fabae Scop.).—Entomologia exp. appl. 6, 326336.Google Scholar
Hennig, E. (1966). Zur Histologie und Funktion von Einstichen der schwarzen Bohnenlaus (Aphis fabae Scop.) in Vicia faba-Pflanzen.—J. Insect Physiol. 12, 6576.Google Scholar
Hennig, E. (1968). Über Beziehungen zwischen dem “Probieren” der schwarzen Bohnenblattlaus (Aphis fabae Scop.) und dem Stofftransport bei Vicia faba L.—Arch. Pflanzenschutz. 4, 7576.Google Scholar
Hepburn, H. R. (1971). Proboscis extension and recoil in Lepidoptera.—J. Insect Physiol. 17, 637656.Google Scholar
Heriot, A. D. (1934). The renewal and replacement of the stylets of sucking insects during each stadium, and the method of penetration.—Can. J. Res. 11, 602612.Google Scholar
Heriot, A. D. (1937). The crumena of the Coccidae and the Adelges.—Proc. ent. Soc. Br. Columb. 33, 2224.Google Scholar
Heriot, A. D. (1944). Comparison of the injury to apple caused by scales and aphids (Homoptera: Aphididae & Coccidae).—Proc. ent. Soc. Br. Columb. 41, 1315.Google Scholar
Hildebrand, E. M. (1961). Relations between whitefly and sweet potato tissue in transmission of yellow dwarf virus.—Science, N.Y. 133, 282284.Google Scholar
Hill, A. R. (1971). The reproductive behavior of Metopolophium festucae (Theobald) at different temperatures and on different host plants.—Ann. appl. Biol. 67, 289295.Google Scholar
Hille Ris Lambers, D. (1966). Polymorphism in Aphididae.—A. Rev. Ent. 11, 4778.Google Scholar
Hodges, L. R. & McLean, D. L. (1969). Correlation of transmission of bean yellow mosaic virus with salivation activity of Acyrthosiphon pisum (Homoptera: Aphididae).—Ann. ent. Soc. Am. 62, 13981401.Google Scholar
Hodgson, E., Self, L. S. & Guthrie, F. E. (1965). Adaptation of insects to toxic plants.—Int. Congr. Ent. 1964, 210.Google Scholar
Holloway, P. J. & Baker, E. A. (1970). The cuticles of some Angiosperm leaves and fruits.—Ann. appl. Biol. 66, 145154.Google Scholar
Honeyborne, C. H. B. (1969). Performance of Aphis fabae and Brevicoryne brassicae on plants treated with growth regulators.—J. Sci. Fd Agric. 20, 388390.Google Scholar
Honeyborne, C. H. B. (1971). Plants and insect waxes.—Rep. agric. hort. Res. Stn Univ. Bristol. 1970, 104105.Google Scholar
Honeyborne, C. H. B., Emden, H. F. van, & Hoad, G. V. (1971). Collection and analysis of phloem sap.—Rep. agric. hort. Res. Stn Univ. Bristol 1970, 104.Google Scholar
Hoof, H. A. van (1957). On the mechanism of transmission of some plant viruses.—Proc. K. ned. Akad. Wet. (C) 60, 314317.Google Scholar
Hoof, H. A. van (1958 a). An investigation of the biological transmission of a non-persistent virus.—Meded. Inst. Phytopath. 161, 196.Google Scholar
Hoof, H. A. van (1958 b). Some considerations on the transmission of non-persistent viruses by aphids.—Meded. Inst. plziektenk. Onderz. no. 177, 114116.Google Scholar
Hoof, H. A. van (1959). Betrachtung über die Übertragung nichtpersistenter Viren.—Int. Congr. Crop Prot., 267269.Google Scholar
Hori, K. (1967). Preliminary observation on the salivary glands of cabbage stink bug, Eurydema rugosa Motschulsky (Hemiptera: Pentatomidae).—Appl. Ent. Zool. 2, 187194.Google Scholar
Hori, K. (1969). Some properties of salivary amylases of Adelphocoris suturalis (Miridae), Dolycoris baccarum (Pentatomidae), and several other Heteropteran species.—Entomologia exp. appl. 12, 454466.Google Scholar
Hori, K. (1970). Some variations in the activities of salivary amylase and protease of Lygus disponsi Linnavuori (Hemiptera: Miridae).—Appl. Ent. Zool. 5, 5161.Google Scholar
Horne, A. S. & Lefroy, H. M. (1915). Effects produced by sucking insects and red spider upon potato foliage.—Ann. appl. Biol. 1, 370386.Google Scholar
Horsfall, J. L. (1923). The effects of feeding punctures of aphids on certain plant tissues.—Bull. Pa agric. Exp. Stn. no. 182, 122.Google Scholar
Hottes, F. C. (1954). Some observations on the rostrum of Cinara puerca Hottes (Aphidae).—Gt Basin Nat. 14, 8386.Google Scholar
House, H. L. (1962). Insect nutrition.—A. Rev. Biochem. 31, 653672.Google Scholar
Hovanitz, W. (1947). Physiological factors which influence the infection of Aedes aegypti with Plasmodium gallinaceum.—Am. J. Hyg. 45, 6781.Google Scholar
Hovasse, R. (1930). Marchalina hellenica (Gennadius). Essai de monographie d'une cochenille.—Bull. biol. Fr. Belg. 64, 389449.Google Scholar
Hudson, A., Bowman, L. & Orr, C. W. M. (1960). Effects of absence of saliva on blood feeding by mosquitoes.—Science, N.Y. 131, 17301731.Google Scholar
Hukusima, S. (1963). The reproductive capacity of the apple leaf-curling aphids (Myzus malisuctus Matsumura) reared on gibberellin-treated apple trees.—Jap. J. appl. Ent. Zool. 7, 343347.Google Scholar
Ibbotson, A. & Kennedy, J. S. (1959). Interaction between walking and probing in Aphis fabae Scop.—J. exp. Biol. 36, 377390.Google Scholar
Imms, A. D. (1957). A general textbook of entomology.—886 pp. London, Methuen.Google Scholar
Isely, D. (1946). The cotton aphid.—Bull. Ark. agric. Exp. Stn. no. 462, 129.Google Scholar
Ishikawa, S. (1963). Responses of maxillary chemoreceptors in the larva of the silkworm Bombyx mori to stimulation by carbohydrates.—J. cell. comp. Physiol. 61, 99107.Google Scholar
Jarvis, J. L. (1970). Relative injury to some cruciferous oilseeds by the turnip aphid.—J. econ. Ent. 63, 14981502.Google Scholar
Jensen, D. D. (1954). The effect of aphid toxins on Cymbidium orchid flowers.—Phytopathology 44, 493494.Google Scholar
Jensen, D. D. (1969). Insect diseases induced by plant-pathogenic viruses. pp. 505525.In Maramorosch, K. (Ed.) Viruses, vectors and vegetation.—666 pp. New York, Interscience.Google Scholar
Jermy, T. (1965). The role of rejective stimuli in the host selection of phytophagous insects.—Int. Congr. Ent. 1964, 547.Google Scholar
Johnson, B. (1955). The flight capacity of aphids in relation to the spread of viruses.—Proceedings, Conference on Potato Virus Disease, 2nd meeting (Lisse-Wageningen)1954,7074.Google Scholar
Johnson, B. (1966). Wing polymorphism in aphids III. The influence of the host plant.—Entomologia exp. appl. 9, 213222.Google Scholar
Johnson, B. & Birks, P. R. (1960). Studies on wing polymorphism in aphids I. The developmental process involved in the production of the different forms.—Entomologia exp. appl. 3, 327339.Google Scholar
Joyce, R. J. V. (1938). On certain aspects of the feeding mechanism, feeding habits and ecology of the potato aphids Myzus persicae Sulz. and Macrosiphum gei Koch in relation to the dissemination of virus diseases of potatoes.—200 pp. M.Sc. Thesis, Univ. Wales.Google Scholar
Juneja, P. S., Gholson, R. K., Burton, R. L. & Starks, K. J. (1972). The chemical basis for greenbug resistance in small grains. I. Benzyl alcohol as a possible resistance factor.—Ann. ent. Soc. Am. 65, 961964.Google Scholar
Kantack, E. J. & Dahms, R. G. (1957). A comparison of injury caused by the apple grain aphid and greenbug to small grains.—J. econ. Ent. 50, 156158.Google Scholar
Kashin, P. (1966). Electronic recording of the mosquito bite.—J. Insect Physiol. 12, 281286.Google Scholar
Kazda, V. (1966). Untersuchungen über die phytotoxisch wirkenden Stoffe aus dem Extract von Blattläusen.—Meded. Rijksfac. LandbWet. Gent 31, 10051010.Google Scholar
Kennedy, J. S. (1951). Benefits to aphids from feeding on galled and virus-infected leaves.—Nature, Lond. 168, 825826.Google Scholar
Kennedy, J. S. (1958). Physiological condition of the host plant and susceptibility to aphid attack.—Entomologia exp. appl. 1, 5065.Google Scholar
Kennedy, J. S. & Booth, C. O. (1951). Host alternation in Aphis fabae Scop. I. Feeding preferences and fecundity in relation to the age and kind of leaves.—Ann. appl. Biol. 38, 2564.Google Scholar
Kennedy, J. S. & Booth, C. O. (1954). Host alternation in Aphis fabae Scop. II. Changes in the aphids.—Ann. appl. Biol. 41, 88106.Google Scholar
Kennedy, J. S., Booth, C. O. & Kershaw, W. J. S. (1961). Host finding by aphids in the field III. Visual attraction.—Ann. appl. Biol. 49, 121.Google Scholar
Kennedy, J. S., Day, M. F. & Eastop, V. F. (1962). A conspectus of aphids as vectors of plant viruses.—London, Commonw. Inst. Ent., 1114.Google Scholar
Kennedy, J. S., Lamb, K. P. & Booth, C. O. (1958). Responses of Aphis fabae Scop. to water shortage in host plants in pots.—Entomologia exp. appl. 1, 274290.Google Scholar
Kennedy, J. S. & Mittler, T. E. (1953). A method of obtaining phloem sap via the mouth-parts of aphids.—Nature, Lond. 171, 528.Google Scholar
Kennedy, J. S. & Stroyan, H. L. G. (1959). Biology of aphids.—A. Rev. Ent. 4, 139160.Google Scholar
Kieckhefer, R. W. & Derr, R. F. (1967). Rearing three species of cereal aphids on artificial diets.—J. econ. Ent. 60, 663665.Google Scholar
Kilian, L. & Nielson, M. W. (1971). Differential effects of temperature on the biological activity of four biotypes of the pea aphid.—J. econ. Ent. 64, 153155.Google Scholar
Kindler, S. D. & Staples, R. (1970). Nutrients and the reaction of two alfalfa clones to the spotted alfalfa aphid.—J. econ. Ent. 63, 938940.Google Scholar
Kinsey, M. G. & Mclean, D. L. (1967). Additional evidence that aphids ingest through an open stylet sheath.—Ann. ent. Soc. Am. 60, 12631265.Google Scholar
Kirby, W. & Spence, W. (1870). An introduction to entomology.—607 pp. London, Longmans.Google Scholar
Kislow, C., Barbosa, P. & Edwards, L. J. (1971). An embedding procedure for the study of aphid feeding and insect tissues.—Ann. ent. Soc. Am. 64, 296297.Google Scholar
Kislow, C. J. & Edwards, L. J. (1972). Repellent odour in aphids.—Nature, Lond. 235, 108109.Google Scholar
Klingauf, F. & Nöcker-Wenzal, K. (1972). Einfluss von Aminosäuren auf das Wirtswahlverhalten von Acyrthosiphon pisum (Homoptera: Aphididae) unter besonderer Berück-sichtigung ihres chemischen Aufbaus.—Entomologia exp. appl. 15, 274286.Google Scholar
Kloft, W. (1955). Untersuchungen an der Rinde von Weisstannen (Abies pectinata) bei Befall durch Dreyfusia (Adelges) piceae Ratz. Vorläufige Mitteilung.—Z. angew. Ent. 37, 340348.Google Scholar
Kloft, W. (1957). Further investigations concerning the interrelationship between bark condition of Abies alba and infestation by Adelges piceae typica and A. nüsslini sclzneideri.—Z. angew. Ent. 41, 438442.Google Scholar
Kloft, W. (1960 a). Wechselwirkungen zwischen pflanzensaugenden Insekten und den von ihnen besogenen Pflanzengeweben. Pt. 1.—Z. angew. Ent. 45, 337381.Google Scholar
Kloft, W. (1960 b). Wechselwirkungen zwischen pflanzensaugenden Insekten und den von ihnen besogenen Pflanzengewehen. Pt. 2.—Z. angew. Ent. 46, 4270.Google Scholar
Kloft, W. & Ehrhardt, P. (1959 a). Zur Sitkalauskalamität in Nordwestdeutschland.—Wald-hygiene 3, 4749.Google Scholar
Kloft, W. & Ehrhardt, P. (1959 b). Untersuchungen über Saugtätigkeit und Schadwirkung der Sitkafichtenlaus, Lisomaphis abietina (Walk.), (Neomyzaphis abietina Walk.).—Phytopath. Z. 35, 401410.Google Scholar
Kloft, W. & Kunkel, H. (1969). Die Bedeutung des Ortes der Nahrungsaufnahme pflanzensaugender Insekten für die Anwendbarkeit von lnsektiziden mit systemischer Wirkung.—Z. PflKrankh. PflPath. PflSchutz. 76, 18.Google Scholar
Kolesova, D. A. (1967). The pear phylloxera. (In Russian).—Zashch. Rast. 1967, (9), 58. (From Rev. appl. Ent. (A) 58, 43).Google Scholar
Kolkaila, A. M. & Soliman, A. A. (1954). A study of the banana aphid, Pentalonia nigronervosa Coq. (Hemiptera Homoptera: Aphididae).—Bull. Soc. Fouad I. Ent. 38, 231250.Google Scholar
Krieger, D. L. (1971). Rearing several aphid species on synthetic diet.—Ann. ent. Soc. Am. 64, 11761177.Google Scholar
Kring, J. B. (1969). Behavioral responses of winged bean aphids to colored fluorescent lamps.—J. econ. Ent. 62, 14501455.Google Scholar
Kring, J. B. (1972). Flight behavior of aphids.—A. Rev. Ent. 17, 425452.Google Scholar
Lal, K. B. & Singh, R. N. (1945). Control of woolly aphis by Coccinella septempunctata Linn.—Indian Fmg 6, 2425.Google Scholar
Lal, O. P. (1972). Sterility in black bean aphid through terramycin, likuden and flavomycin.—Curr. Sci. 41, 7476.Google Scholar
Lamarck, J. B. P. A. De M. De (1801). Systême des animaux sans vertèbres.—432 pp. Paris.Google Scholar
Lamb, K. P. (1963). Water loss from aphids at moderate temperatures.—J. Insect Physiol. 9, 703711.Google Scholar
Laurema, S. & Nuorteva, P. (1961). On the occurrence of pectin polygalacturonase in the salivary glands of Heteroptera and Homoptera Auchenorrhyncha.—Suom. hyönt. Aikak. 27, 8993.Google Scholar
Lawson, F. R., Lucas, G. B. & Hall, N. S. (1954). Translocation of radioactive phosphorus injected by the green peach aphid into tobacco plants.—J. econ. Ent. 47, 749752.Google Scholar
Leach, J. G. (1940). Insect transmission of plant diseases.—615 pp. New York, McGraw-Hill.Google Scholar
Leclant, F. (1968). Connaissances actuelles sur les pucerons dans leurs relations avec les maladies à virus des plantes.—Ann. Épiphyt. 19, 455482.Google Scholar
Lees, A. D. (1967). The production of the apterous and alate forms in the aphid Megoura viciae Buckton, with special reference to the role of crowding.—J. Insect Physiol. 13, 289318.Google Scholar
Leonhardt, H. (1940). Beiträge zur Kenntnis der Lachniden, der wichtigsten Tannenhonigtauerzeuger.—Z. angew. Ent. 27, 208272.Google Scholar
Levin, D. A. (1971). Plant-phenolics: an ecological perspective.—Am. Nat. 105, 157182.Google Scholar
Lindemann, C. (1948). Beitrag zur Ernährungsphysiologie der Blattläuse.—Z. vergl. Physiol. 31, 112133.Google Scholar
Linder, H. J. (1956). Structure and histochemistry of the maxillary glands in the milkweed bug, Oncopeltus fasciatus (Hem.).—J. Morph. 99, 575612.Google Scholar
Lindquist, R. K. & Sorensen, E. L. (1970). Interrelationships among aphids, tarnished plant bugs, and alfalfas.—J. econ. Ent. 63, 192195.Google Scholar
Lipke, H. & Fraenkel, G. (1956). Insect nutrition.—A. Rev. Ent. 1, 1744.Google Scholar
List, G. & Sylvester, E. S. (1954). The relationship of aphids to a toxicogenic disease known as aphid-yellows of celery.—Tech. Bull. Colo. agric. Exp. Stn. no. 50, 115.Google Scholar
Llewellyn, M. (1972). The effects of the lime aphid, Eucallipterus tiliae L. (Aphididae) on the growth of the lime Tilia × vulgaris Hayne. I. Energy requirements of the aphid population.—J. appl. Ecol. 9, 261282.Google Scholar
Loebenstein, G., Alper, M. & Deutsch, M. (1964). Preventing aphid-spread cucumber mosaic virus with oils.—Phytopathology 54, 960962.Google Scholar
López-Abella, D. & Bradley, R. H. E. (1969). Aphids may not acquire and transmit stylet-borne viruses while probing intercellularly.—Virology 39, 338342.Google Scholar
Lowe, H. J. B. (1967 a). Interspecific differences in the biology of aphids (Homoptera: Aphididae) on leaves of Vicia faba. I. Feeding behaviour.—Entomologia exp. appl. 10, 347357.Google Scholar
Lowe, H. J. B. (1967 b). Interspecific differences in the biology of aphids (Homoptera: Aphididae) on leaves of Vicia faba. II. Growth and excretion.—Entomologia exp. appl. 10, 413420.Google Scholar
Lowe, H. J. B. (1969). Susceptibility of aphids to vamidothion, a systemic insecticide, in relation to their feeding behaviour on broad beansBull. ent. Res. 58, 829831.Google Scholar
Lowe, H. J. B. (1971 a). Alterations of the expression of varietal differences in resistance to aphids under differing environmental conditions.—PANS Pest. Artic. News Summ. 17, 253255.Google Scholar
Lowe, H. J. B. (1971 b). Relationship of the movements of aphids over the host-plant to their spatial distribution.—Bull. ent. Res. 60, 599605.Google Scholar
Lowe, S. & Strong, F. E. (1963). The unsuitability of some viruliferous plants as hosts for the green peach aphid, Myzus persicae.—J. econ. Ent. 56, 307309.Google Scholar
MacGibbon, D. B. & Allison, R. M. (1971). An electrophoretic separation of cabbage aphid and plant glucosinolases.—N.Z.Jl Sci. 14, 134140.Google Scholar
MacGill, E. I. (1947). The anatomy of the head and mouth-parts of Dysdercus iniermedius Dist.—Proc. zool. Soc. Lond. 117, 115128.Google Scholar
Macias, W. & Mink, G. I. (1969). Preference of green peach aphids for virus-infected sugar-beet leaves.—J. econ. Ent. 62, 2829.Google Scholar
MacKinnon, J. P. (1961). Preference of aphids for excised leaves to whole plants.—Can. J. Zool. 39, 445447.Google Scholar
MacRobbie, E. A. C. (1971). Phloem translocation. Facts and mechanisms: a comparative survey.—Biol. Rev. 46, 429481.Google Scholar
Maddrell, S. H. P. (1963). Control of ingestion in Rhodnius prolixus Stål.—Nature, Land. 198, 210.Google Scholar
Madsen, H. F. & Williams, K. (1969). The effect of petroleum oils on Anjou pears and on pear psylla, Psylla pyricola.—Can. Ent. 101, 584588.Google Scholar
Maltais, J. B. (1959). Feeding the pea aphid Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae) on plant cuttings in organic nutrient solutions.—Can. Ent. 91, 336340.Google Scholar
Maltais, J. B. & Auclair, J. L. (1952). Occurrence of amino acids in the honeydew of the crescent-marked lily aphid, Myzus circumfiexus (Buck.).—Can. J. Zool. 30, 191193.Google Scholar
Maltais, J. B. & Auclair, J. L. (1957). Factors in resistance of peas to the pea aphid, Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae). I. The sugar-nitrogen ratio.—Can. Ent. 89, 365370.Google Scholar
Maltais, J. B. & Auclair, J. L. (1962). Free amino acid and amide composition of pea leaf juice, pea aphid haemolymph, and honeydew, following the rearing of aphids on single pea leaves treated with amino compounds.—J. Insect Physiol. 8, 391399.Google Scholar
Maramorosch, K. (1962). Biological transmission of disease agents.—192 pp. New York, Academic Press.Google Scholar
Maramorosch, K. (1969). Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Marchal, P. (1928). Etude biologique et morphologique du puceron lanigère du pommier (Eriosoma lanigerum (Hausmann)).—Ann. Epiphyt. 14, 1106.Google Scholar
Marek, J. (1961 a). Die Wirkung von Aphidenstichen auf Pflanzliche Zellen.—Entomologia exp. appl. 4, 2034.Google Scholar
Marek, J. (1961 b). Über das Einstich- und Saugverhalten der Zwiebellaus, Myzus ascalonicus Doncaster.—Z. PflKrankh. PflPath. PflSchutz. 68, 155165.Google Scholar
Markkula, M. & Laurema, S. (1967). The effect of amino acids, vitamins, and trace elements on the development of Acyrthosiphon pisum Harris (Hom., Aphididae).—Ann. agric. Fenn. 6, 7780.Google Scholar
Markkula, M. & Roukka, K. (1970 a). Resistance of plants to the pea aphid Acyrthosiphon pisum Harris (Hom., Aphididae). I. Fecundity of the biotypes on different host plants.—Ann. agric. Fenn. 9, 127132.Google Scholar
Markkula, M. & Roukka, K. (1970b). Resistance of plants to the pea aphid Acyrthosiphon pisum Harris (Hom., Aphididae). II. Fecundity on different red clover varieties.—Ann. agric. Fenn. 9, 304308.Google Scholar
Markicula, M. & Roukka, K. (1971). Resistance of plants to the pea aphid Acyrthosiphon pisum Harris (Horn., Aphididae). III. Fecundity on different pea varieties.—Ann. agric. Fenn. 10, 3337.Google Scholar
Markkula, M. & Tiittanen, K. (1969). Effect of fertilizers on the reproduction of Tetranychus telarius (L.), Myzus persicae (Sulz.) and Acyrthosiphon pisum Harris.—Ann. agric. Fenn. 8, 914.Google Scholar
Martini, C. (1958). Beobachtungen über das Saugen bei Blattläusen (Homoptera Aphi didae).—Z. PflKrankh. PflPath. PflSchutz 65, 9092.Google Scholar
Maxwell, F. G. & Painter, R. H. (1959). Factors affecting rate of honeydew deposition by Therioaphis maculata (Buck.) and Toxoptera graminum (Rond.).—J. econ. Ent. 52, 368373.Google Scholar
Maxwell, F. G. & Painter, R. H. (1962 a). Auxin content of extracts of certain tolerant and susceptible host plants of Toxoptera graminum, Macrosiphum pisi, and Therioaphis maculata and relation to host plant resistance.—J. econ. Ent. 55, 4656.Google Scholar
Maxwell, F. G. & Painter, R. H. (1962 b). Plant growth hormones in ether extracts of the greenbug, Toxoptera graminum, and the pea aphid, Macrosiphum pisi, fed on selected tolerant and susceptible host plants.—J. econ. Ent. 55, 5762.Google Scholar
Maxwell, F. G. & Painter, R. H. (1962 c). Auxins in honeydew of Toxoptera graminum, Therioaphis maculata, and Macrosiphum pisi, and their relation to degree of tolerance in host plants.—Ann. ent. Soc. Am. 55, 229233.Google Scholar
Mayo, Z. B. & Starks, K. J. (1972). Chromosome comparisons of biotypes of Schizaphis graminum to one another and to Rhopalosiphum maidis, R. padi, and Sipha flava.—Ann. ent. Soc. Am. 65, 925928.Google Scholar
McAllan, J. W. & Adams, J. B. (1961). The significance of pectinase in plant penetration by aphids.—Can. J. Zool. 39, 305310.Google Scholar
McAllan, J. W. & Cameron, M. L. (1956). Determination of pectin polygalacturonase in four species of aphids.—Can. J. Zool. 34, 559564.Google Scholar
McKay, R. (1934). Injury to apple trees due to paraffin oil used for the control of woolly aphis.—J. Pomol. 12, 167176.Google Scholar
McLean, D. L (1964). An attempt to relate depth of stylet penetration to the transmission frequency of two aphid vectors.—J. econ. Ent. 57, 955957.Google Scholar
McLean, D. L. (1971). Probing behavior of the pea aphid, Acyrthosiphon pisum. V. Com parison of Vicia faba, Pisum sativum, and a chemically defined diet as food sources.—Ann. ent. Soc. Am. 64, 499503.Google Scholar
McLean, D. L. & Kinsey, M. G. (1964). A technique for electronically recording aphid feeding and salivation.—Nature, Lond. 202, 13581359.Google Scholar
McLean, D. L. & Kinsey, M. G. (1965). Identification of electrically recorded curve patterns associated with aphid salivation and ingestion.—Nature, Lond. 205, 11301131.Google Scholar
McLean, D. L. & Kinsey, M. G. (1967). Probing behavior of the pea aphid, Acyrthosiphon pisum. I. Definitive correlation of electronically recorded waveforms with aphid probing activities.—Ann. ent. Soc. Am. 60, 400406.Google Scholar
McLean, D. L. & Kinsey, M. G. (1968 a). Probing behavior of the pea aphid, Acyrthosiphon pisum. II. Comparisons of salivation and ingestion in host and non-host plant leaves.—Ann. ent. Soc. Am. 61, 730739.Google Scholar
McLean, D. L. & Kinsey, M. G. (1968 b). Probing behavior of the pea aphid, Acyrthosiphon pisum. III. Effect of temperature differences on certain probing activities.—Ann. ent. Soc. Am. 61, 927933.Google Scholar
McLean, D. L. & Kinsey, M. G. (1969). Probing behavior of the pea aphid, Acyrthosiphon pisum. IV. Effects of starvation on certain probing activities.—Ann. ent. Soc. Am. 62, 987994.Google Scholar
McLean, D. L. & Weight, W. A. (1968). An electronic measuring system to record aphid salivation and ingestion.—Ann. ent. Soc. Am. 61, 180185.Google Scholar
McMurthy, J. A. & Stanford, E. H. (1960). Observations of feeding habits of the spotted alfalfa aphid on resistant and susceptible alfalfa plants.—J. econ. Ent. 53, 714717.Google Scholar
McWhirter, N. & McWhirter, R. (1971). The Guinness book of records. 18th edn.317 pp. London, Guinness.Google Scholar
Metcalf, C. L. & Flint, W. P. (1962). Destructive and useful insects.—1087 pp. New York, McGraw-Hill.Google Scholar
Miles, P. W. (1958 a). Contact chemoreception in some Heteroptera, including chemo reception internal to the stylet food canal.—J. Insect Physiol. 2, 338347.Google Scholar
Miles, P. W. (1958 b). The stylet movements of a plant-sucking bug, Oncopeltus fasciatus Dall. (Heteroptera: Lygaeidae).—Proc. R. ent. Soc. Lond. (A) 33, 1520.Google Scholar
Miles, P. W. (1959 a). Secretion of two types of saliva by an aphid.—Nature, Lond. 183, 756.Google Scholar
Miles, P. W. (1959 b). The salivary secretions of a plant-sucking bug, Oncopeltus fasciatus (Dall.) (Heteroptera: Lygaeidae)—I. The types of secretion and their roles during feeding.—J. Insect Physiol. 3, 243255.Google Scholar
Miles, P. W. (1960). A simple apparatus demonstrating the stylet action of a plant bug.—Proc. R. ent. Soc. Lond. (A) 35, 4748.Google Scholar
Miles, P. W. (1964 a). Studies on the salivary physiology of plant bugs: oxidase activity in the salivary apparatus and saliva.—J. Insect Physiol. 10, 121129.Google Scholar
Miles, P. W. (1964 b). Studies on the salivary physiology of plant bugs: the chemistry of formation of the sheath material.—J. Insect Physiol. 10, 147160.Google Scholar
Miles, P. W. (1965). Studies on the salivary physiology of plant-bugs: the salivary secretions of aphids.—J. Insect Physiol. 11, 12611268.CrossRefGoogle ScholarPubMed
Miles, P. W. (1967). Studies on the salivary physiology of plant-bugs: transport from haemolymph to saliva.—J. Insect Physiol. 13, 17871801.Google Scholar
Miles, P. W. (1968 a). Studies on the salivary physiology of plant-bugs: experimental induction of galls.—J. Insect Physiol. 14, 97106.Google Scholar
Miles, P. W. (1968 b). Insect secretions in plants.—A. Rev. Phytopath. 6, 137164.Google Scholar
Miles, P. W. (1969 a). Interaction of plant phenols and salivary phenolases in the relationship between plants and Hemiptera.—Entomologia exp. appl. 12, 736744.CrossRefGoogle Scholar
Miles, P. W. (1969 b). Incorporation and metabolism of cysteine in the haemolymph and saliva of a plant bug.—Aust. J. biol. Sci. 22. 12711276.Google Scholar
Miles, P. W. (1972). The saliva of Hemiptera.—Adv. insect Physiol. 9, 183255.Google Scholar
Miles, P. W., McLean, D. L. & Kinsey, M. G. (1964). Evidence that two species of aphid ingest food through an open stylet sheath.—Experientia 20, 582.Google Scholar
Miles, P. W. & Sloviak, D. (1970). Transport of whole protein molecules from blood to saliva of a plant-bug.—Experienzia 26, 611.Google Scholar
Millardet, P. M. A. (1885). Histoire des principales variétés et espèces de vignes d'origine américaine qui résistent au Phylloxera.—240 pp. Paris.Google Scholar
Misawa, T. & Hashiba, T. (1967). Studies on the mechanism of aphid transmission of styletborne viruses (l).—Tohoku J. agric. Res. 18, 87105.Google Scholar
Miskimen, G. W. (1970). Population dynamics of the yellow sugarcane aphid, Sipha flava, in Puerto Rico. as affected by heavy rains.—Ann. ent. Soc. Am. 63, 642645.Google Scholar
Mittler, T. E. (1953). Amino-acids in phloem sap and their excretion by aphids.—Nature, Lond. 172. 207.Google Scholar
Mittler, T. E. (1954). The feeding and nutrition of aphids.—234 pp. Doctoral Thesis, Univ. Cambridge.Google Scholar
Mittler, T. E. (1957). Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). I. The uptake of phloem sap.—J. exp. Biol. 34, 334341.Google Scholar
Mittler, T. E. (1958 a). Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew.—J. exp. Biol. 35, 7484.Google Scholar
Mittler, T. E. (1958 b). Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). III. The nitrogen economy.—J. exp. Biol. 35, 626638.Google Scholar
Mittler, T. E. (1967). Effect of amino acid and sugar concentrations on the food uptake of the aphid Myzus persicae.—Entomologia exp. appl. 10, 3951.Google Scholar
Mittler, T. E. (1970 a). Uptake rates of plant sap and synthetic diet by the aphid Myzus persicae.—Ann. ent. Soc. Am. 63, 17011705.Google Scholar
Mittler, T. E. (1970 b). Effects of dietary amino-acids on the feeding rate of the aphid Myzus persicae.—Entomologia exp. appl. 13, 432437.Google Scholar
Mittler, T. E. (1971 a). Some effects on the aphid Myzus persicae of ingesting antibiotics incorporated into artificial diets.—J. Insect Physiol. 17, 13331347.Google Scholar
Mittler, T. E. (1971 b). Dietary amino-acid requirements of the aphid Myzus persicae affected by antibiotic uptake.—J. Nutr. 101, 10231028.Google Scholar
Mittler, T. E. & Dadd, R. H. (1963 a). Studies on the artificial feeding of the aphid Myzus persicae (Sulzer)—I. Relative uptake of water and sucrose solutions.—J. Insect Physiol. 9, 623645.Google Scholar
Mittler, T. E. & Dadd, R. H. (1963 b). Studies on the artificial feeding of the aphid Myzus persicae (Sulzer)—II. Relative survival, development, and Larviposition on different dietsJ. Insect Physiol. 9, 741757.Google Scholar
Mittler, T. E. & Dadd, R. H. (1964). Gustatory discrimination between liquids by the aphid Myzus persicae (Sulzer).—Entomologia exp. appl. 7, 315328.CrossRefGoogle Scholar
Mittler, T. E. & Dadd, R. H. (1965 a). Feeding behaviour of the aphid Myzus persicae (Sulzer) in relation to the suitability of host plants.—Int. Congr. Ent. 1964, 548.Google Scholar
Mittler, T. E. & Dadd, R. H. (1965 b). Differences in the probing responses of Myzus persicae (Sulzer) elicited by different feeding solutions behind a Parafllm membrane.—Entomologia exp. appl. 8, 107122.Google Scholar
Mittler, T. E., Dadd, R. H. & Daniels, S. C. Jr (1970). Utilization of different sugars by the aphid Myzus persicae.—J. Insect Physiol. 16, 18731890.Google Scholar
Mittler, T. E., Kleinjan, J. E. & Kunkel, H. (1970) Apteriform development induced by radish seedlings in larvae of the aphid Myzus persicae reared on artificial diet.—J. Insect Physiol. 16, 21192125.Google Scholar
Mittler, T. E. & Kunkel, H. (1971). Wing production by grouped and isolated apterae of the aphid Myzus persicae on artificial diet.—Entomologia exp. appl. 14, 8392.CrossRefGoogle Scholar
Mittler, T. E. & Pennell, J. T. (1964). Simple screening test for systemic aphicides.—J. econ. Ent. 57, 302303.Google Scholar
Mittler, T. E. & Sutherland, O. R. W. (1969). Dietary influences on aphid polymorphism.—Eniomologia exp. appl. 12, 703713.Google Scholar
Mittler, T. E. & Sylvester, E. S. (1961). A comparison of the injury to alfalfa by the aphids, Therioaphis maculata and Macrosiphum pisi.—J. econ. Ent. 54, 615622.Google Scholar
Mittler, T. E., Tsitsipis, J. A. & Kleinjan, J. E. (1970). Utilization of dehydroascorbic acid and some related compounds by the aphid Myzus persicae feeding on an improved diet.—J. Insect Physiol. 16, 23152326.Google Scholar
Moericke, V. (1951). Eine Farbfalle zur Kontrolle des Fluges von Blattläusen, insbesondere der Pfirsichblattlaus, Myzodes persicae (Sulz.).—NachrBl. dt. PflSchurzdienst, Stuttg. 3, 2324.Google Scholar
Moericke, V. (1960). Die Magengrösse von Myzus persicae (Sulz.) und Doralis fabae (Scop.) in Abhängigkeit von der Wirtspflanze.—Z. angew. Ent. 47, 137142.Google Scholar
Moericke, V. (1969). Hostplant specific colour behaviour by Hyalopterus pruni (Aphididae).—Entomologia exp. appl. 12, 524534.Google Scholar
Moericke, V. & Mittler, T. E. (1965). Schlucken Blattläuse ihren eigenen Speichel?Z. PflKrankh. PflPath. PflSchutz. 72, 513515.Google Scholar
Moericke, V. & Mittler, T. E. (1966). Oesophageal and stomach inclusions of aphids feeding on various Cruciferae.—Entomologia exp. appl. 9, 287297.Google Scholar
MöllerströM, G. (1963). Different kinds of injury to leaves of the sugar beets and their effect on yield.—Meddn. St. VäxtskAnst. 12, 299309.Google Scholar
Moreau, J. P. (1966). Comportement de piqûre de certains Homoptères suceurs de sève.—Annls. Nutr. Aliment. 20, 325330.Google Scholar
Moreau, J. P. & Loon, L. C. van (1966). Le comportement de piqûre chez Rhopalosiphum padi L. (Homoptères, Aphididés).—C.r. hebd. Séanc. Acad. Sci., Paris 262, 904907.Google Scholar
Morstatt, H. (1908). Untersuchungen an der roten austernförmigen Schildlaus, Diaspis fallax nov. nom. Horvath.—Zbl. Bakt. 21, 349379, 408424.Google Scholar
Mosbacher, G. C. (1963). Gesteigerte Saugfrequenz von Dactynolus jaceae L. (Homoptera, Aphididae) bei Erhöhung des Aminosäurengehaltes in der Wirtspflanze.—Experientia 19, 411412.Google Scholar
Mound, L. A. (1971). The feeding apparatus of thrips.—Bull. ent. Res. 60, 547548.Google Scholar
Muir, F. & Kershaw, J. C. (1911). On the homologies and mechanism of the mouth parts of Hemiptera.—Psyche 18, 112.Google Scholar
Müller, F. P. (1969). Eine bionomische Rasse von Aphis nasturtii Kaltenbach, weiche die Kartoffel meidet.—Arch. PflSchutz 5, 179188.Google Scholar
Müller, F. P. (1971). Vorläufige Ergebnisse nach langjähriger zwangsweiser parthenogenetischer Dauerzuchthaltung von Aphiden.—Beitr. Ent. 21, 165178.Google Scholar
Müller, H. J. (1958). The behaviour of Aphis fabae in selecting its host plants, especially different varieties of Vicia faba.—Entomologia exp. appl. 1, 6672.Google Scholar
Müller, H. J. (1962). Über die Ursachen der unterschiedlichen Resistenz von Vicia faba L. gegenüber der Bohnenblattlaus, Aphis (Doralis) fabae Scop. VIII. Das Verhalten geflügelter Bohnenläuse nach der Landung auf Wirten und Nichtwirten.—Entomologia exp. appl. 5, 189210.Google Scholar
Müller, H. J. (1968). Über die Ursachen der unterschiedlichen Resistenz von Vicia faba L. gegenüber der Bohnenblattlaus, Aphis (Doralis) fabae Scop. X. Vermehrung und Wachstum verschiedener Aphidenarten auf Rastatter und Schlanstedter Ackerbohnen.—Entomologia exp. appl. 11, 355371.Google Scholar
Munakata, K. (1970). Insect antifeedants in plants. pp. 179187. In Wood, D. L., Silverstein, R. M. & Nakajima, M. (Eds.) Control of insect behavior by natural products.— 345 pp. New York, Academic Press.Google Scholar
Muniappan, R. & Starks, K. J. (1971). Effects of antibiotics on greenbugs on small grains.—J. econ. Ent. 64, 333335.Google Scholar
Murdie, G. (1969 a). Some causes of size variation in the pea aphid, Acyrthosiphon pisum Harris.—Trans. R. ent. Soc. Lond. 121, 423442.Google Scholar
Murdie, G. (1969 b). The biological consequences of decreased size caused by crowding or rearing temperatures in apterae of the pea aphid, Acyrthosiphon pisum Harris.—Trans. R. ent. Soc. Lond. 121, 443455.Google Scholar
Murray, J. S. & Parry, W. H. (1969). The association of Pineus pini and Cucurbitaria pithyophila on Scots pine in northern Scotland.—Scott. For. 23, 813.Google Scholar
Myers, J. G. (1929). Facultative blood-sucking in phytophagous Hemiptera.—Parasitology 21, 472480.Google Scholar
Naito, A. (1965). On relation between the feeding behaviour of Laodelphax striatellus Fallèn (Delphacidae) and the ovarial maturation.—Jap. J. appl. Ent. Zool. 9, 305306.Google Scholar
Naito, A. & Masaki, J. (1967). Studies on the feeding behavior of green rice leafhopper, Nephotettix cincticeps Uhler. II. Probing frequency of the adult leafhopper.—Jap. J. appl. Ent. Zool. 11, 150156.Google Scholar
Namba, R. (1962). Aphid transmission of plant viruses from the epidermis and subepidermal tissue: Myzus persicae (Sulzer) cucumber mosaic virus.—Virology 16, 267271.Google Scholar
Namba, R. & Higa, S. Y. (1970). Transmission of watermelon mosaic virus by green peach aphids subjected to light or darkness.—J. econ. Ent. 63, 98101.Google Scholar
Naude, T. J. (1926). Insects in relation to plant disease.—S. Afr. J. Sci. 23, 644649.Google Scholar
Nault, L. R. & Bradley, R. H. E. (1969). Acquisition of maize dwarf mosaic virus by the greenbug, Schizaphis graminum.—Ann. ent. Soc. Am. 62, 403406.Google Scholar
Nault, L. R. & Gyrisco, G. G. (1966). Relation of the feeding process of the pea aphid to the inoculation of pea enation mosaic virus.—Ann. ent. Soc. Am. 59, 11851197.Google Scholar
Nelson, H. D. (1943). The position of the rostralis of the California red scale feeding on lemons.—J. econ. Ent. 36, 750751.Google Scholar
Nickel, J. L. & Sylvester, E. S. (1959). Influence of feeding time, stylet penetration, and developmental instar on the toxic effect of the spotted alfalfa aphid.—J. econ. Ent. 52, 249254.Google Scholar
Nishi, Y. (1969). Inhibition of viruses by vector saliva. pp. 579591. In Maramorosch, K. (Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Norris, D. M., Ferkovich, S. M., Baker, J. E., Rozental, J. M. & Borg, T. K. (1971). Energy transduction in quinone inhibition of insect feeding.—J. Insect Physiol. 17, 8597.Google Scholar
North, P. (1967). Poisonous plants and fungi.—161 pp. London, Blandford.Google Scholar
Nuorteva, P. (1952). Die Nahrungspflanzenwahl der Insekten im Lichte von Untersuchungen an Zikaden.—Suomal. Tiedeakat Toim. IV, 19, 190.Google Scholar
Nuorteva, P. (1957). Cinara piceae (Panz.) (Hom., Aphididae) found in Finland.—Suom. hyönt. Aikak. 23, 3536.Google Scholar
Nuorteva, P. (1958 a). On the occurrence of proteases and amylases in the salivary glands of Cinara piceae (Panz.) (Hom. Aphididae).—Suom. hyönr. Aikak. 24, 89.Google Scholar
Nuorteva, P. (1958 b). Die Rolle der Speichelsekrete im wechselverhältnis zwischen Tier und Nahrungspflanze bei Hornopteren und Heteropteren.—Entomologia exp. appl. 1, 4149.Google Scholar
Nuorteva, P. & Laurema, S. (1961). The effect of diet on the amino acids in the haemolymph and salivary glands of Heteroptera.—Suom. hyönt. Aikak. 27, 5765.Google Scholar
Nuorteva, P. & Reinius, L. (1953). Incorporation and spread of C14-labelled oral secretions of wheat bugs in wheat kernels.—Suom. hyönt. Aikak. 19, 95104.Google Scholar
Ocfemia, G. O., Celino, M. S. & Garcia, F. J. (1947). Further studies on transmission of bunchy-top and mosaic of abacá (manila hernp plant), separation of the two diseases, and mechanics of inoculation by Pentalonia nigronervosa Coquerel.—Philipp. Agric. 31, 8797.Google Scholar
Ochs, G. (1960). Quantitativer Nachweis eines Abbaus von Zellulose und Lignin in der roll kranken Rebe.—Experientia 16, 361.Google Scholar
Oechssler, G. (1962). Studien über die Saugschäden mitteleuropäischer Tannenläuse im Gewebe einheimischer und ausländischer Tannen.—Z. angew. Ent. 50, 408454.Google Scholar
O' Loughlin, G. T. & Chambers, T. C. (1969). The feeding sites in Sonchus oleraceus of Hyperomyzus lactucae, the aphid vector of lettuce necrotic yellows virus.—Aust. J. biol. Sci. 20, 629637.Google Scholar
Oman, P. (1969). Criteria of specificity in virus-vector relationships. pp. 122. In Maramorosch, K. (Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Orlob, G. B. (1961). Host plant preference of cereal aphids in the field in relation to the ecology of barley yellow dwarf virus.—Entomologia exp. appl. 4, 6772.Google Scholar
Orlob, G. B. (1963). Reappraisal of transmission of tobacco mosaic virus by insects.—Phyropathology 53, 822830.Google Scholar
Orlob, G. B. & Bradley, R. H. E. (1960 a). Drei weitere Blattlausarten, die das Y-virus der Kartoffel mit den Stechborstenspitzen ürbertragen.—Z. PflKrankh. PflPath. PflSchutz. 67, 407409.Google Scholar
Orlob, G. B. & Bradley, R. H. E. (1960 b). Does the cabbage aphid carry cabbage virus B both on its mouthparts and at some other site?Phytopathology 50, 649.Google Scholar
Orlob, G. B. & Bradley, R. H. E. (1961). Where cabbage aphids carry transmissible virus B. phytophathology 51, 397399.Google Scholar
Ortman, E. E. &Painter, R. H. (1960). Quantitative measurements of damage by the green-bug, Toxoptera graminum, to four wheat varieties.—J. econ. Ent. 53, 798802.Google Scholar
Ossiannilsson, F. (1966). Insects in the epidemiology of plant viruses.—A. Rev. Ent. 11, 213232.Google Scholar
Owen, W. B. (1965). Structure and function of the gustatory organs of the mosquito.—Int. Congr. Ent. 1964, 793.Google Scholar
Painter, R. H. (1928). Notes on the injury to plant cells by chinch bug feeding.—Ann. ent. Soc. Am. 21, 232242.Google Scholar
Paliwal, Y. C. & Sinha, R. C. (1970). On the mechanism of persistence and distribution of barley yellow dwarf virus in an aphid vector.—Virology 42, 668680.Google Scholar
Parkhurst, D. F. (1972). Conductive capacities of veins in expanding leaves of Quercus.—Aust. J. biol. Sci. 25, 425428.Google Scholar
Parrish, W. B. (1967). The origin, morphology, and innervation of aphid stylets (Homoptera).—Ann. ent. Soc. Am. 60, 273276.Google Scholar
Parrott, D. M. (1971). Altering the resistance of plants to infection and colonisation by nematodes.—PANS Pest. Artic. News Summ. 17, 249251.Google Scholar
Parry, W. H. (1971). Differences in the probing behaviour of Elatobium abietinum feeding on Sitka and Norway spruces.—Ann. appl. Biol. 69, 177185.Google Scholar
Parry, W. H. & Ford, J. B. (1967). The artificial feeding of phosphamidon to Myzus persicae. I. Intraspecific differences exhibited by this aphid on feeding through a Parafilm membrane.—Entomologia exp. appl. 10, 437452.Google Scholar
Parry, W. H. & Ford, J. B. (1969). The artificial feeding of phosphamidon to Myzus persicae. II. The effects of phosphamidon on liquid uptake through a Paraflim membrane.—Entomologia exp. appl. 12, 118.Google Scholar
Parry, W.H. & Ford, J.B. (1971). The artificial feeding of phosphamidon to Myzus persicae. III. Effects of phosphamidon on the longevity, fecundity and liquid uptake.—Entomologia exp. appl. 14, 389398.Google Scholar
Parsons, M. C. (1964). The origin and development of the hemipteran cranium.—Can. J. Zool. 42, 409432.Google Scholar
Parsons, M. C. (1965). Cranial development in the Hemiptera.—Int. Congr. Ent. 1964, 135.Google Scholar
Paschke, J. D. & Sylvester, E. S. (1957). Laboratory studies on the toxic effects of Therioaphis maculata (Buckton).—J. econ. Ent. 50, 742748.Google Scholar
Pathak, M. D. & Painter, R. H. (1958). Differential amounts of material taken up by four biotypes of corn leaf aphids from resistant and susceptible sorghums.—Ann. ent. Soc. Am. 51, 250254.Google Scholar
Paxton, W. A. & Burkhardt, C. C. (1970). Response of alfalfa seed chalcid ovipositor to chemicals occurring naturally in alfalfa.—Ann. ent. Soc. Am. 63, 16171620.Google Scholar
Pelet, F., Hildebrandt, A. C., Riker, A. J. & Skoog, F. (1960). Growth in vitro of tissues isolated from normal stems and insect galls.—Am. I. Bot. 47, 186195.Google Scholar
Perttunen, V., Kangas, E. & Oksanen, H. (1968). The mechanisms by which Blastophagus piniperda L. (Col., Scolytidae) reacts to the odour of an attractant fraction isolated from pine phloem.—Suom. hyönt. Aikak. 34, 205222.Google Scholar
Pesson, P. (1944). Contribution à l'étude morphologique et fonctionnelle de la tête, de l'appareil buccal et du tube digestif des femelles de coccides.—266 pp. Paris, Imprimerie Nationale /CNRA. (Monographies publidés par les Stations et Laboratoires de Recherches Agronomiques.)Google Scholar
Pesson, P. (1951). Ordre des Homoptères. In Grassé, P. P.. Traité de Zoologie 10, 13901656. Paris, Masson.Google Scholar
Petri, L. (1907). Studi sul marciume delle radici nelle viti fillocericate.—Memorie R. Staz. Patol. veget. 5665.Google Scholar
Petri, L. (1908). Einige Bemerkungen über die Rolle der Milben bei der Dactylopiuskrankheit der Reben.—Zbl. Bakt. 21, 375379.Google Scholar
Pinet, J. M. (1963). L'innervation sensorielle des stylets mandibulaires et maxillaires de Rhodnius prolixus Stål (Insecte Hemiptère Hétéroptère).—C. r. hebd. Séanc. Acad. Sci., Paris 257, 36663668.Google Scholar
Pinet, J. M. (1968). Données ultrastructurales sur l'innervation sensorielle des stylets maxillaires de Rhodinus prolixus (Heteroptera Reduviidae).—C. r. hebd. Séanc. Acad. Sci., Paris 267, 634637.Google Scholar
Pintera, A. (1965). The effect of various substances on the development of aphids.—Int. Congr. Ent. 1964, 546.Google Scholar
Pirone, T. P. (1969). Mechanism of transmission of stylet-borne viruses. pp. 199210. In Maramorosch, K. (Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Pirone, T. P. (1970). Effect of aphid saliva and extracts of aphid-infested leaves on the infectivity of tobacco mosaic virus and some stylet-borne viruses.—Phytopathology 60, 16571659.Google Scholar
Pirone, T. P. (1971). Ability of stylet-borne and non-aphid transmissible viruses to infect plants through wounds produced by aphid stylets.—Virology, 45, 374380.Google Scholar
Pollard, D. G. (1954). The melon stem-borer, Apomecyna binubila Pascoe (Coleoptera: Lamiinae), in the Sudan.—Bull. ent. Res. 45, 553561.Google Scholar
Pollard, D. G. (1955). Feeding habits of the cotton whitefly, Bemisia tabaci Genn. (Homoptera: Aleyrodidae).—Ann. appl. Biol. 43, 664671.Google Scholar
Pollard, D. G. (1958). Feeding of the cotton aphid (Aphis gossypii Glover).—Emp. Cott. Gr. Rev. 35, 244253.Google Scholar
Pollard, D. G. (1959). Feeding habits of the lace-bug Urentius aegyptiacus Bergevin (Hemiptera: Tingidae).—Ann. appl. Biol. 47, 778782.Google Scholar
Pollard, D. G. (1968). Stylet penetration and feeding damage of Eupteryx melissae Curtis (Hemiptera, Cicadellidae) on sage.—Bull. ent. Res. 58, 5571.Google Scholar
Pollard, D. G. (1969). Directional control of the stylets in phytophagous Hemiptera.—Proc. R. ent. Soc. Lond. (A) 44, 173185.Google Scholar
Pollard, D. G. (1970 a). Simulated cannibalism in an aphid.—Proc. R. ent. Soc. Lond. (A) 45, 98103.Google Scholar
Pollard, D. G. (1970 b). The mechanism of stylet movement in Psylla mali Schmidberger (Homoptera: Psyllidae).—Zool. J. Linn. Soc. 49, 295307.Google Scholar
Pollard, D. G. (1971 a). Some aspects of plant penetration by Myzus persicae (Sulz.) nymphs (Homoptera, Aphididae).—Bull. ent. Res. 61, 315324.Google Scholar
Pollard, D. G. (1971 b). The use of polyporus for the investigation of stylet behaviour in the Hemiptera.—Entomologia exp. appl. 14, 283296.Google Scholar
Pollard, D. G. (1971 c). Some observations on the mouth-parts of whiteflies (Hem., Aleyrodidae).—Entomoiogist's mon. Mag. 107, 8188.Google Scholar
Pollard, D. G. (1972). The stylet structure of a leafhopper (Eupteryx melissae Curtis: Homoptera, Cicadellidae).—J. nat. Hist. 6, 261271.Google Scholar
Pollard, D. G. & Saunders, J. H. (1956). Relations of some cotton pests to jassid resistant sakel.—Emp. Cott. Gr. Rev. 33, 197202.Google Scholar
Ponsen, M. B. (1969). The effect of potato leafroll virus on the biology of Myzus persicae.—Neth. J. Pl. Path. 75, 360368.CrossRefGoogle Scholar
Potter, C. & Gillham, E. M. (1957). Effect of host-plant on the resistance of Acyrthosiphon pisum (Harris) to insecticides.—Bull. ent. Res. 48, 317322.Google Scholar
Prillieux, E. (1879). Étude des altérations produites dans le bois du pommier par les piqûres du puceron lanigère.—Annls inst. natn. agron., Paris (1877–78), 3949.Google Scholar
Puchkov, V. G. (1956). Principal trophic groups of Heteroptera and the change of their feeding during their life history.—Zool. Zh. 35, 3244. (In Russian, English summary on pp. 56).Google Scholar
Quoilin, J. (1966). Relations existant entre le potentiel de multiplication de Myzus persicae Sulz. (Homoptera-Aphididae) et la nutrition minérale de la plant-hôte par des solutions ioniquement équilibrées.—Bull. Rech. agron. Gembloux N.S. 1, 140152.Google Scholar
Quoilin, J. (1967). Nutrition minérale de la plant-hôte et fécondité de Myzus persicae Sulz. (Homoptera-Aphididae).—Meded. Rijksfak. LandbWet. Gent. 32, 365386.Google Scholar
Raccah, B. & Tahori, A. S. (1971). Wing dimorphism influencing resistance or toxicity tests and food uptake in Myzus persicae.—Entomologia exp. appl. 14, 310314.Google Scholar
Raccah, B., Tahori, A. S. & Applebaum, S. W. (1971). Effect of nutritional factors in synthetic diet on increase of alate forms in Myzus persicae.—J. Insect Physiol. 17, 13851390.Google Scholar
Ramanatha Menon, M. & Christudas, S. P. (1967). Studies on the population of the aphid Pentalonia nigronervosa Coq. on banana plants in Kerala.—Agric. Res. J. Kerala 5, 8486.Google Scholar
Rautapää, J. (1967). Studies on the host plant relationships of Aphis idaei v.d.Goot and Amphorophora rubi (Kalt.) (Horn., Aphididae).—Ann. agric. fenn. 6, 174190.Google Scholar
Rawitscher, F. (1933). Wohin stechen die Pflanzenläuse?Z. Bot. 26, 145168.Google Scholar
Roach, W. A. & Massee, A. M. (1931). Preliminary experiments on the physiology of the resistance of certain rootstocks to attack by woolly aphis.—Rep. E. Mailing Res. Stn. 1928–30, 111120.Google Scholar
Robert, Y., Maury, Y. & Quéméner, J. (1969). Transmission du virus de l'enroulement de la pomme de terre par différentes formes et stades d'une souche de Myzus persicae (Sulz.) (Homoptera: Aphididae): résultats comparés sur Physalis floridana Rydberget Solanum tuberosum L. var. Claudia.—Ann Phytopathol. 1, 167179.Google Scholar
Roberts, F. M. (1940). Studies on the feeding methods and penetration rates of Myzus persicae Sulz., Myzus circumflexus Buckt., and Macrosiphum gei Koch.—Ann. appl. Biol. 27, 348358.Google Scholar
Romell, L.-G. (1935). Savhonung.—Svensk. bot. Tidskr. 29, 391406.Google Scholar
Root, R. B. & Olson, A. M. (1969). Population increase of the cabbage aphid, Brevicoryne brassicae, on different host plants.—Can. Ent. 101, 768773.Google Scholar
Rosen, H. R. (1916). The development of the Phylloxera vastatrix leaf gall. Am. J. Bot. 3, 337360.Google Scholar
Rothschild, M. & Hinton, H. E. (1968). Holding organs on the antennae of male fleas.—Proc. R. ent. Soc. Lond. (A) 43, 105107.Google Scholar
Russell, G. E. (1969). Effects of sucrose sprays and darkness on aphid colonization of sugar beet and on aphid transmission of yellowing viruses.—Ann. appl. Biol. 63, 351356.Google Scholar
Russell, G. E. (1970). Effects of mineral oil on Myzus persicae (Sulz.) and its transmission of beet yellows virus.—Bull. ent. Res. 59, 691694.Google Scholar
Russell, G. E. (1971). Effects on Myzus persicae (Sulz.) and transmission of beet yellows virus of applying certain trace elements to sugar beet.—Ann. appl. Biol. 68, 6770.Google Scholar
Russell, S. L. & Kimmins, W. C. (1971). Growth regulators and the effect of barley yellow dwarf virus on barley (Hordeum vulgare L.).—Ann. Bot. 35, 10371043.Google Scholar
Savary, A. (1953). Le puceron cendré du poirier (Sappaphis pyri Fonsc.) en Suisse romande. —Landw. Jb. Schweiz. 67, 247314.Google Scholar
Saxena, K. N. (1954 a). Alimentary canal and associated structures of the Jassidae (Homoptera).—Curr. Sci. 23, 198199.Google Scholar
Saxena, K. N. (1954 b). Feeding habits and physiology of digestion of certain leafhoppers Homoptera: Jassidae.—Experientia 10, 383384.Google Scholar
Saxena, K. N. (1965). Control of the orientation and feeding behaviour of red cotton bug, Dysdercus koenigii (F.), by chemical constituents of plants.—Int. Congr. Ent. 1964,294.Google Scholar
Saxena, P. N. & Chada, H. L. (1971 a). The greenbug, Schizaphis graminum. 1. Mouth parts and feeding habits.—Ann. ent. Soc. Am. 64, 897904.Google Scholar
Saxena, P. N. & Chada, H. L. (1971 b). The greenbug, Schizaphis graminum 2. The salivary gland complex.—Ann. ent. Soc. Am. 64, 904912.Google Scholar
Schaefers, G. A. (1966). The use of direct current for electronically recording aphid feeding and salivation.—Ann. ent. Soc. Am. 59, 10221024.Google Scholar
Schaefers, G. A. & Judge, F. D. (1971). Effects of temperature, photoperiod, and host plant on alary polymorphism in the aphid, Chaetosiphon fragaefolii.—J. Insect. Physiol. 17, 365379.Google Scholar
Schalk, J. M., Kindler, S. D. & Manglitz, G. R. (1969). Temperature and the preference of the spotted alfalfa aphid for resistant and susceptible alfalfa plants.—J. econ. Ent. 62, 10001003.Google Scholar
Schäller, G. (1961). Aminosäuren im Speichel und Honigtau der grünen Apfelblattlaus Aphis pomi Deg.—Homoptera.—Entomologia exp. appl. 4, 7385.Google Scholar
Schäller, G. (1963). Papierchromatographische Analyse der Aminosäuren und Amide des Speichels und Honigtaues von 10 Aphidenarten mit unterschiedlicher Phytopathogenität.—Zool. Jb. (Abt. Allgem. Zool. Physiol. Tiere) 70, 399406.Google Scholar
Schäller, G. (1965). Untersuchungen über den β-indolylessigsäure-Gehalt des Speichels von Aphidenarten mit untersehiedlicher Phytopathogenität.—Zool. Jb. (Abt. Allgem. Zool., Physiol. Tiere) 71, 385392.Google Scholar
Scheel, C. A., Beck, S. D. & Medler, J. T. (1957). Nutrition of plant-sucking Hemiptera.—Science, N.Y. 125, 444445.Google Scholar
Scheel, C. A., Beck, S. D. & Medler, J. T. (1958). Feeding and nutrition of certain Hemiptera.—Int. Congr. Ent. 1956, 303308.Google Scholar
Schetters, C. (1960). Untersuchungen über die Art und die Folgewirkung des Saugvorganges bei der San José-Schildlaus (Aspidiotus perniciosus Comst.).—Z. angew. Ent. 46, 277322.Google Scholar
Schimitschek, E. & Wienke, E. (1967). Auswirkungen des Befalles von Dreyfusia (Adelges) nüsslini C. B. auf den Wasserhausshalt und die lebende Rinde der Tanne.—Anz. Schädlingsk. 40, 166171.Google Scholar
Schmutterer, H. (1969). Versuche zur Übertragung des Erbsenenationenvirus durch Injektion virushaltiger Hämolymphe von einer Blattlausart oder -form in die andere.—Z. PflKrankh. PflPath. PflSchutz 76, 257263.Google Scholar
Schneider, F. (1944). Eine Ursache der raschen Blattlausverrnehrung an Bohnen.—Forsch-Ergebn. Geb. Gartenb. eidg. VersAnsr. 1944, 14.Google Scholar
Schoonhoven, L. M. (1967). Loss of hostplant specificity by Manduca sexta after rearing on an artificial diet.—Entomologia exp. appl. 10, 270272.Google Scholar
Severin, H. H. P. (1931). Modes of curly-top transmission by the beet-leafhopper Eutettix tenellus (Baker).—Hilgardia 6, 253276.Google Scholar
Severin, H. H. P. & Tompkins, C. M. (1948). Aphid transmission of mild mosaic virus of annual stock.—Hilgardia 18, 539552.Google Scholar
Shanks, C. H. & Finnigan, B. F. (1969). Behavior, survival, and reproduction of the straw-berry aphid on holidic diets and host and nonhost plants.—Ann. ent. Soc. Am. 62, 14901492.Google Scholar
Shanks, C. H. & Finnigan, B. (1970). Probing behavior of the strawberry aphid.—Ann. ent. Soc. Am. 63, 734737.Google Scholar
Sharma, G. D. & Kevan, D. K. McE. (1965). The mouthparts of Collembola.—Int. Congr. Ent. 1964, 142.Google Scholar
Siencka, A. (1959). Zmiany anatomiczne i cytologiczne wywołane przez Myzus ribis L. w lisciach porzeczek (Ribes) i próby powiazania ich ze zbiorem owoców.—(In Polish with English summary).—Zesz. nauk. wyższ. Szk. roln. Szczec. 2, 91117. (Anatomical and cytological changes brought about by M. ribis on the leaves of currants (Ribes) and their effect on fruit yields.)Google Scholar
Simons, J. N. (1955). Some plant-vector-virus relationships of southern cucumber mosaic virus.—Phytopathology 45, 217219.Google Scholar
Simons, J. N. (1966). Effects of temperature and length of acquisition feeding time on transmission of nonpersistent viruses by aphids.—J. econ. Ent. 59, 10561062.Google Scholar
Simons, J. N. (1969). Differential transmission of closely related strains of potato virus Y by the green peach aphid and the potato aphid.—J. econ. Ent. 62, 10881096.Google Scholar
Simons, J. N. & Eastop, V. F. (1970). Temperature effects on aphid transmission of non-persistent viruses with notes on morphological variation within clones of aphids with differing vector efficiencies.—J. econ. Ent. 63, 484490.CrossRefGoogle Scholar
Sitholey, R. V. (1971). Observations on the three-dimensional structure of the leaf cuticle in certain plants.—Ann. Bot. 35, 637639.Google Scholar
Skene, K. G. M. (1971). Hormonal effects on sugar release from vine canes.—Ann. Bot. 35, 277286.Google Scholar
Skotland, C. B. & Hagedorn, D. J. (1955). Vector-feeding and plant-tissue relationships in the transmission of the Wisconsin pea streak virus.—Phytopazhology 45, 665666.Google Scholar
Sloan, W. J. S. (1946). The fruit spotting bug.—Qd agric. J. 62, 229233.Google Scholar
Smith, B. D. & Baker, E. A. (1971). Experiments on the selection of host plants by aphids.—Rep. agric. hort. Res. Stn Univ. Bristol 1970, 105.Google Scholar
Smith, F. F. (1933). The nature of the sheath material in the feeding punctures produced by the potato leaf hopper and the three-cornered alfalfa hopper.—J. agric. Res. 47, 475485.Google Scholar
Smith, F. F., Johnson, G. V., Kahn, R. P. & Bing, A. (1964). Repellency of reflective aluminium to transient aphid virus-vectors.—Phytopathology 54, 748.Google Scholar
Smith, F. F. & Webb, R. E. (1969). Repelling aphids by reflective surfaces, a new approach to the control of insect-transmitted viruses. pp. 631639. In Maramorosch, K. (Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Smith, J. J. B. & Friend, W. G. (1970). Feeding in Rhodnius prolixus: responses to artificial diets as revealed by changes in electrical resistance.—J. Insect Physiol. 16, 17091720.Google Scholar
Smith, J. J. B. & Friend, W. G. (1971). The application of split-screen television recording and electrical resistance measurement to the study of feeding in a blood-sucking insect (Rhodnius prolixus).—Can. Ent. 103, 167172.Google Scholar
Smith, K. M. (1926). A comparative study of the feeding methods of certain Hemiptera and of the resulting effects upon the plant tissue, with special reference to the potato plant.—Ann. appl. Biol. 13, 109139.Google Scholar
Snodgrass, R. E. (1935). Principles of insect morphology.—667 pp. New York, McGraw-Hill.Google Scholar
Snodgrass, R. E. (1944). The feeding apparatus of biting and sucking insects affecting man and animals.—Smithson. misc. Collns 104, 1113.Google Scholar
Soest, W. van & Cats, V. M-M. (1956). Does the aphid Myzus persicae (Sulz.) imbibe tobacco mosaic virus?.—Virology 2, 411414.Google Scholar
Sogawa, K. (1967). Chemical nature of the sheath materials secreted by Ieafhoppers. (Hom-optera).—Appl. Entomol. Zool. 2, 1321.Google Scholar
Sogawa, K. (1968). Collecting method and preliminary analysis of the soluble salivary secretions of the planthoppers.—Appl. Entomol. Zool. 3, 152154.Google Scholar
Sorin, M. (1958). Life cycles of two aphids causing galls on Distylium racemosum.—Akitu 7, 8992.Google Scholar
Sorin, M. (1960). Insertion of stylets of aphids and plant tissues.—Jap. J. appl. Ent. Zool. 4, 3844.Google Scholar
Sorin, M. (1961). The mouth parts of Aphis craccivora Koch and the penetration of stylets into host plants.—Jap. J. appl. Ent. Zool. 5, 217224.Google Scholar
Sorin, M. (1962). The life history of Melanaphis bambusae (Fullaway), and the penetration of stylets into host plants.—Kontyû 30, 222229.Google Scholar
Sorin, M. (1963). The mouth parts of Myzus persicae Sulzer and the penetration of stylets into host plants.—Res. & Related Data, Junior Coll. Agric., Univ. Osaka Pref. no. 9, 3541.Google Scholar
Sorin, M. (1966). Physiological and morphological studies on the suction mechanism of plant juice by aphids.—Bull. Univ. Osaka Prefect. (B) 18, 95137.Google Scholar
Spasskiĭ, A. A. (Ed.) (1971). The immunity of the grape-vine to phylloxera and its control. [In Russian].—107 pp. Kishinev, Redak.-izdat. Otdel Akad. Nauk moldav. SSR. (From Rev. appl. Ent. (A) 59, 4153–4160.)Google Scholar
Spooner, C. S. (1938). The phylogeny of the Hemiptera based on a study of the head capsule.—Univ. Ill. Bull. 35, 1102.Google Scholar
Srivastava, P. N. & Auclair, J. L. (1962). Characteristics of invertase from the alimentary canal of the pea aphid, Acyrthosiphon pisum (Harr.) (Homoptera, Aphididae).—J. insect Physiol. 8, 527535.Google Scholar
Srivastava, P. N. & Auclair, J. L. (1971 a). An improved chemically defined diet for the pea aphid, Acyrthosiphon pisum.—Ann. ent. Soc. Am. 64, 474478.Google Scholar
Srivastava, P. N. & Auclair, J. L. (1971 b). Influence of sucrose concentration on diet uptake and performance by the pea aphid, Acyrthosiphon pisum.—Ann. emt. Soc. Am. 64, 739743.Google Scholar
Staal, G. B. (1967). Insect hormones in plants.—Meded. Rijksfak. LandbWet. Gent 32, 393400.Google Scholar
Staniland, L. N. (1924). The immunity of apple stocks from attacks of woolly aphis (Eriosoma lanigerum, Hausmann). Part II. The causes of the relative resistance of the stocks.—Bull. ent. Res. 15, 157170.Google Scholar
Stearns, L. A. (1956). Meadow spittlebug and peach gumosis.—J. econ. Ent. 49, 382385.Google Scholar
Steiner, H., Immendoerfer, G. & Bosch, J. (1970). The arthropods occurring on apple-trees throughout the year and possibilities for their assessment.—European Plant Protection Organisation Publication, Series A, no. 57, 131146.Google Scholar
Stevenson, A. B. (1970). Strains of the grape phylloxera in Ontario with different effects onthe foliage of certain grape cultivars.—J. econ. Ent. 63, 135138.Google Scholar
Storey, H. H. (1939). Investigations of the mechanism of the transmission of plant viruses by insect vectors. III. The insect's saliva.—Proc. R. Soc. (B) 127, 526543.Google Scholar
Strong, F. E. (1965). Detection of lipids in the honeydew of an aphid.—Nature, Lond. 205,1242.Google Scholar
Strong, F. E. (1970). Physiology of injury caused by Lygus hesperus.—J. econ. Ent. 63, 808814.Google Scholar
Strong, F. E. & Kruitwagen, E. C. (1968). Polygalacturonase in the salivary apparatus of Lygus hesperus (Hemiptera).—J. Insect Physiol. 14, 11131119.Google Scholar
Strong, F. E. & Sakamoto, S. S. (1963). Some amino acid requirements of the green peach aphid Myzus persicae (Sulzer) determined with glucose-U-C14.—J. Insect Physiol. 9, 875879.Google Scholar
Sukhov, K. S. (1944). Salivary secretion of the aphis Myzus persicae Sulz. and its ability to form a filtering apparatus.—Dokl. Akad. Nauk SSSR. 42, 226228.Google Scholar
Sutherland, O. R. W. (1969). The rôle of the host plant in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum.—J. Insect Physiol. 15, 21702201.Google Scholar
Sutherland, O. R. W. & Mittler, T. E. (1971). Influence of diet composition and crowding on wing production by the aphid Myzus persicae.—J. insect Physiol. 17, 321328.Google Scholar
Swenson, K. G. (1962). Bean yellow mosaic virus (BYMV) transmission by Myzus persicae.—Aust. J. biol. Sci. 15, 468482.Google Scholar
Swanson, K. G. (1968). Role of aphids in the ecology of plant viruses.—A. Rev. Phytopath. 6, 351374.Google Scholar
Swenson, K. G. (1969). Plant susceptibility to virus infection by insect transmission. pp. 143157. In Maramorosch, K. (Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Sylvester, E. S. (1962). Mechanism of plant virus transmission by aphids. pp. 1131. In Maramorosch, K. (Ed.) Biological transmission of disease agents.—192 pp. New York, Academic Press.Google Scholar
Sylvester, E. S. (1969). Virus transmission by aphids—a viewpoint. pp. 159173. In Maramorosch, K. (Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Sylvester, E. S. & Bradley, R. H. E. (1962). Effect of treating stylets of aphids with formalin on the transmission of sugar beet yellows virus.—Virology 17, 381386.Google Scholar
Sylvester, E. S. & Richardson, J. (1963). Short-term probing behavior of Myzus persicae (Sulzer) as affected by fasting, anesthesia, and labial manipulation.—Virology 20, 302309.Google Scholar
Sylvester, E. S. & Ricualwson, J. (1964). Transmisson of cabbage mosaic virus by green peach aphids—stylet transmission studies.—Virology 22, 520538.Google Scholar
Tahori, A. S. & Hazan, A. (1970). Rearing of the black citrus aphid Toxoptera aurantii on chemically defined diets.—J. Insect Physiol. 16, 19751981.Google Scholar
Tamaki, G., Burtt, B. A. & Landis, B. J. (1970). Arrest and aggregation of male Myzus persicae (Hemiptera: Aphididae).—Ann. ent. Soc. Am. 63, 955960.Google Scholar
Tate, H. D. (1937). Method of penetration, formation of stylet sheaths and source of food supply of aphids.—Iowa St. Coll. J. Sci. 11, 185190.Google Scholar
Taylor, C. E. & Cadman, C. H. (1969). Nematode vectors. pp. 5594. In Maramorosch, K.(Ed.) Viruses, vectors, and vegetation.—666 pp. New York, Interscience.Google Scholar
Taylor, L. R. (1959). Abortive feeding behaviour in a black aphid of the Aphis fabae group.—Entomologia exp. appl. 2, 143153.Google Scholar
Thomas, J. G. & Sorensen, E. L. (1971). Effects of excision duration on spotted alfalfa aphid resistance in alfalfa cuttings.—J. econ. Ent. 64, 700704.Google Scholar
Thomas, J. G., Sorensen, E. L. & Painter, R. H. (1966). Attached vs. excised trifoliates for evaluation of resistance in alfalfa to the spotted alfalfa aphid.—J. econ. Ent. 59, 444448.Google Scholar
Thompson, K. F. (1963). Resistance to the cabbage aphid (Brevicoryne brassicae) in Brassica plants.—Nature, Lond. 198, 209210.Google Scholar
Thorsteinson, A. J. (1955). The experimental study of the chemotactic basis of host specificity in phytophagous insects.—Can. Ent. 87, 4957.Google Scholar
Thurston, R. & Webster, J. A. (1962). Toxicity of Nicotiana gossei Domin to Myzus persicae (Sulzer).—Entomologia exp. appl. 5, 233238.Google Scholar
Toba, H. H. & Paschke, J. D. (1967). Crowding as the primary factor in the production of the agamic alate form of Therioaphis maculata (Homoptera: Aphididae).—J. Insect Plzysiol. 13, 381396.Google Scholar
Todd, G. W., Getahun, A. & Cress, D. C. (1971). Resistance in barley to the green-bug, Schizaphis graminum. 1. Toxicity of phenolic and flavonoid compounds and related substances.—Ann. ent. Soc. Am. 64, 718722.Google Scholar
Tsai, J. H. & Bath, J. E. (1970). Additional factors affecting the transmission of pea enation mosaic virus by the pea aphid.—Ann. ent. Soc. Am. 63, 17231727.Google Scholar
Vanderveken, J. (1968 a). Importance des relations vecteur-virus dans l'inhibition de la transmission aphidienne des phytovirus par des pulvérisations d'émulsions huileuses.—Ann. Épiphyt. 19, 141146.Google Scholar
Vanderveken, J. (1968 b). Effects of mineral oils and lipids on aphid transmission of beet mosaic and beet yellows viruses.—Virology 34, 807809.Google Scholar
Vanderveken, J. & Dutrecq, A. (1970). Contribution a l'édtude de l'action inhibitrice d'une huile minérale sur la transmission aphidienne des phytovirus.—Ann. Épiphyt. 2, 387402.Google Scholar
Vanderveken, J. & Ohn, J. C. (1968). Inhibition de la transmission du virus de la jaunisse grave de la betterave par Aphis fabae Scop. a l'aide de pulverisations d'emulsions huileuses (l).—Meded. Rijksfak. LandbWet. Gent 33, 12151221.Google Scholar
Vanderveken, J. & Semal, J. (1966). Aphid transmission of beet yellows virus inhibited by mineral oil.—Phytopathology 56, 12101211.Google Scholar
Vanderzant, E. S. (1965). Nutrition of phytophagous insects.—Int. Congr. Ent. 1964, 538.Google Scholar
Venables, E. P. (1929). Observations on the woolly aphis of the apple, Eriosoma lanigerum (Hausm.).—Proc. ent. Soc. Br. Columb. 1929, no. 26, 2833.Google Scholar
Voeller, B. R. (1967). The plant cell: aspects of its form and function. pp. 245312. In Brachet, J. & Mirsky, A. E. (Eds.) The cell, vol. 4—pp. 564, New York, Academic Press.Google Scholar
Vos, H. C. C. A. A. (1930). De invloed van Pseudococcus citri (Risso) Fern. op de Plant.—81 pp. Thesis, Utrecht University.Google Scholar
Wade, C. V. (1962). An improved way of exposing the stylets of aphids to ultra-violet radiation.—Can. J. Zool. 40, 673674.Google Scholar
Walker, T. S. & Thaine, R. (1971). Proteins and fine structural components in exudate from sieve tubes in Cucurbita pepo stems.—Ann. Bot. 35, 773790.Google Scholar
Warick, R. P. & Hildebrandt, A. C. (1966). Free amino acid contents of stem and Phylloxera gall tissue cultures of grape.—Pl. Physiol., Lancaster 41, 573578.Google Scholar
Watson, M. A. & Nixon, H. L. (1953). Studies on the feeding of Myzus persicae (Sulz.) on radioactive plants.—Ann. appl. Biol. 40, 537545.Google Scholar
Watson, M. A. & Plump, R. T. (1972). Transmission of plant-pathogenic viruses by aphids.—A. Rev. Ent. 17, 425452.CrossRefGoogle Scholar
Watson, M. A. & Roberts, F. M. (1940). Evidence against the hypothesis that certain plant viruses are transmitted mechanically by aphids.—Ann. appl. Biol. 27, 227233.Google Scholar
Way, M. J. & Cammell, M. (1970 a). Aggregation behaviour in relation to food utilization by aphids. pp. 229247. In Watson, A. (Ed.) Animal populations in relation to their food resources.—Symp. Br. Ecol. Soc. no. 10, 477 pp.Google Scholar
Way, M. J. & Cammell, M. E. (1970 b). Self regulation in aphid populations.—Proc. Adv. Study Inst. Dynamics Numbers Popul. (Oosterbeek) 1970, 232242.Google Scholar
Wearing, C. H. (1967). Studies on the relations of insect and host plant. II. The effects of water stress in host plants on the fecundity of Myzus persicae (Sulz.) and Brevi coryne brassicae (L.).—Nature, Lond. 213, 10521053.Google Scholar
Wearing, C. H. (1968). Responses of aphids to pressure applied to liquid diet behind Parafilm membrane. Longevity and larviposition of Myzus persicae (Sulz.) and Brevicoryne brassicae (L.) (Homoptera: Aphididae) feeding on sucrose and sinigrin solutions.—N. Z. Jl Sci. 11, 105121.Google Scholar
Wearing, C. H. & Emden, H. F. Van (1967). Studies on the relations of insect and host plant. I. Effects of water stress in host plants on infestation by Aphis fabae Scop.,Myzus persicae (Sulz.) and Brevicoryne brassicae (L.).—Nature, Lond. 213, 10511052.Google Scholar
Weatherley, P. E., Peel, A. J. & Hill, G. P. (1959). The physiology of the sieve tube. Preliminary experiments using aphid mouth parts.—J. exp. Bot. 10, 116.Google Scholar
Weber, H. (1928 a). Skelett, Muskulatur und Darm der schwarzen Blattlaus, Aphis fabae Scop.—Zoologica, Stuttg. 76, 1120.Google Scholar
Weber, H. (1928 b). Zur vergleichenden Physiologie der Saugorgane der Hemipteren. Mit besonderer Berücksichtigung der Pflanzenläuse.—Z. vergl. Physiol. 8, 145186.Google Scholar
Weber, H. (1930).Biologie der Hemipteren.543 pp. Berlin, Springer.Google Scholar
Weber, H. (1933). Lehrbuch der Entomologie.—726 pp. Jena.Google Scholar
Wedde, H. (1885). Beiträge zur Kenntnis der Rhynchotenrüssels.—Arch. Naturgesch., 112143.Google Scholar
Wegorek, W. & Krzymańska, J. (1968). Biochemiczrie przyczyny odporności niektórycb odmian łubinu na mszycę grochową (Acyrthosiphum pisum Harris).—Pr. nauk. Inst. Ochr. Rośl. 10, 730. (The biochemical causes of resistance in some lupin varieties to the pea aphid) (From Rev. appl. Ent. (A) 60, 900).Google Scholar
Weidemann, H. L. (1970). Histochemische Differenzierung verschiedener Zellen in der Hauptspeicheldrüse von Myzus persicae.—Entomologia exp. appl. 13, 153161.Google Scholar
Weidemann, H. L. (1971 a). Karyometrische Untersuchungen an der Hauptspeicheldruse von Myzus persicae. I. Abhängigkeit der Zellkerngrösse von verschiedenen Wirtspflanzen.—Entomologia exp. appl. 14, 107114.Google Scholar
Weidemann, H. L. (1971 b). Karyometrische Untersuehungen an der Hauptspeicheldrüe von Myzus persicae. II. Kerngrössenänderungen nach Saugen auf Physalis floridana- Pflanzen, die mit dem Blattrollvirus der Kartoffel (Potato leaf roll virus) infiziert waren.—Entomologia exp. appl. 14, 161174.Google Scholar
Weismann, L. & Baran, M. (1969). Einfluss von Veränderungen des physiologischen Zustandes des Sommerrapses auf die Populationsdichte der Kohlblattlaus (Brevi-coryne brassicae L.).—Biológia, Bratisl. 24, 375384.Google Scholar
Weismann, L. & Halanda, S. (1968). Reaktion der schwarzen Bohnenblattlaus Aphis fabae Scop. auf qualitative Änderungen des Inhaltes von Aminosäuren in den Vegetations-organen des Spindelbaumes (Euonymus europa L.) und der Saatpflanzen der Zuckerrube.—Biológia, Bratisl. 23, 849856.Google Scholar
Wells, B. W. (1920). Early stages in the development of certain Pachypsylla galls on Celtis.—Am. J. Bot. 7, 275285.Google Scholar
Wensler, R. J. V. (1962). Mode of host selection by an aphid.—Nature, Lond. 195, 830831.Google Scholar
Wensler, R. & Filshie, B. K. (1969). Gustatory sense organs in the food canal of aphids.—J. Morph. 129, 473492.Google Scholar
West, F. T. (1946). Ecological effects of an aphid population upon weight gains of tomato plants.—J. econ. Ent. 39, 338343.Google Scholar
White, D. (1965). Changes in size of the corpus allatum in a polymorphic insect.—Nature, Lond. 208, 807.Google Scholar
Wightman, J. A. & Gibson, R. W. (1972). Comparison of the distributions of the pink and the green biotypes of the potato aphid, Macrosiphum euphorbiae (Thos.), on potato plants.—Pl. Path. 21, 6972.Google Scholar
Williams, M. W. & Lindner, R. C. (1965). Biochemical components of pear psylla and their relative toxicity to excised bean plants.—J. Insect Physiol. 11, 4152.Google Scholar
Wilson, G. F. & Becker, P. (1960). Horticultural pests.—240 pp. London, Lockwood.Google Scholar
Withycombe, C. L. (1926). Studies on the aetiology of sugar-cane froghopper blight in Trinidad. I. Introduction and general survey.—Ann. appl. Biol. 13, 64108.Google Scholar
Wolf, J. P. & Ewart, W. H. (1955). Two carbohydrases occurring in insect-produced honey-dew.—Science, N.Y. 122, 973.Google Scholar
Wood, E. A. (1971). Designation and reaction of three biotypes of the greenbug cultured on resistant and susceptible species of sorghum.—J. econ. Ent. 64, 183185.Google Scholar
Wood-Baker, C. S. (1968). A note on withdrawal of stylets by feeding aphids.—Entomologist's mon. Mag. 104, 114.Google Scholar
Wood-Baker, C. S. (1971). A new food-plant for Macrosiphum (Sitobion) avenae F. in Britain, with biometric data (Hem., Aphididae).—Entomologist's mon. Mug. 107, 185187.Google Scholar
Woods, A. F. (1900). Stigmonose: a disease of carnations and other pinks.—Bull. U. S. Dep. Agric. 19, 130.Google Scholar
Wynn, G. G. & Boudreaux, H. B. (1972). Structure and function of aphid cornicles.—Ann. ent. Soc. Am. 65, 157166.Google Scholar
Yust, H. R. & Fulton, R. A. (1943). An exudation associated with the feeding location of the California red scale.—J. econ. Ent. 346, 346347.Google Scholar
Zettler, F. W. (1964). Transmission of bean common mosaic virus and duration of probes by aphids fasted for various periods prior to single or multiple acquisition probes.—Phytopathology 54, 129.Google Scholar
Zettler, F. W. (1967). A comparison of species of Aphididae with species of three other aphid families regarding virus transmission and probe behavior.—Phystopathology 57, 398400.Google Scholar
Zettler, F. W., Edwardson, J. R. & Purcifull, D. E. (1968). Ultramicroscopic differences in inclusions of papaya mosaic virus and papaya ringspot virus correlated with differential aphid transmission.—Phytopathology 58, 332335.Google Scholar
Zettler, F. W., Smyly, M. C. & Evans, I. R. (1969). The repellency of mature citrus leaves to probing aphids.—Ann. ent. Soc. Am. 62, 399402.Google Scholar
Zettler, F. W. & Wilkinson, R. E. (1966). Effect of probing behavior and starvation of Myzus persicae on transmission of bean common mosaic virus.—Phytopathology 56, 10791082.Google Scholar
Zimmermann, M. H. (1961). Movement of organic substances in trees.—Science, N.Y. 133, 7379.Google Scholar
Zweigelt, F. (1914). Beiträge zur Kenntnis des Saugphänomens der Blattläuse und der Reaktionen der Pflanzenzellen.—Zentbl. Bakt. ParasitKde. (Abt. II) 42, 265355.Google Scholar