Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-21T21:04:20.788Z Has data issue: false hasContentIssue false

Implications for comparability of laboratory experiments revealed in studies on the effects of population density on vigour in Coptotermes lacteus (Froggatt) and Nasutitermes exitiosus (Hill) (Isoptera: Rhinotermitidae & Termitidae)*

Published online by Cambridge University Press:  10 July 2009

M. Lenz
Affiliation:
CSIRO, Division of Entomology, Canberra, A. C. T. 2601, Australia
R. A. Barrett
Affiliation:
CSIRO, Division of Entomology, Canberra, A. C. T. 2601, Australia
E. R. Williams
Affiliation:
CSIRO, Division of Mathematics and Statistics, Canberra, A. C. T. 2601, Australia

Abstract

The vigour, i.e. survival and wood consumption, of groups of Coptotermes lacteus (Frogg.) and Nasutitermes exitiosus (Hill) was measured when termites were kept at different population densities by changing group size and/or volume of the holding container. A characteristic pattern emerged for subterranean termite species. At low population densities (<0·01 g termites/ml), performance improved with an increase in group size; at higher densities, it tended to decline. The impact of altering group size and container volume on termite vigour was most pronounced at low population densities; at higher population densities, performance tended to be more stable but declined markedly when termites became overcrowded. In most jar-type experiments on termites, especially those conducted in Europe and the USA, small groups of termites are housed in disproportionately large jars, resulting in very low, sub-optimal population densities. Suggestions are made for improvement in experimental design that would lead to an enhancement of the comparability of results from different laboratories.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvey, N. G. et al. (1977). GENSTAT. A general statistical program.—Harpenden, Herts., Rothamsted Exp. Stn.Google Scholar
Awaps (AMERICAN WOOD-PRESERVERS' ASSOCIATION STANDARD) (1983). Standard method for laboratory evaluation to determine resistance to subterranean termites.—2 pp. AWPA book of standards M12–72, Stevensville, Maryland.Google Scholar
Beal, R. H., Carter, F. L. & Southwell, C. R. (1974). Survival and feeding of subterranean termites on tropical woods.—Forest Prod. J. 24, 4448.Google Scholar
Becker, G. (1962 a). Allgemeines über die Laboratonumsprüfung der Beständigkeit von Werkstoffen und der Wirksamkeit von Schutzmitteln gegen Termitet.—Materialprüfung 4, 215222.Google Scholar
Becker, G. (1962 b). Laboratoriumsprüfung von Holz und Holzschutzmitteln mit der südasiatischen Termite Heterotermes indicola Wasmann.—Holz Roh-u. Werkstoff 20, 476486.CrossRefGoogle Scholar
Becker, G. (1967). Die Temperatur-Abhängigkeit der Frasstätigkeit einiger Termitenarten.—Z. angew. Ent. 60, 97123.CrossRefGoogle Scholar
Becker, G. (1969). Rearing of termites and testing methods used in the laboratory.—pp. 351385in Krishna, K. & Weesner, F. M. (Eds.). Biology of termites. Vol. 1598 pp. New York and London, Academic Press.CrossRefGoogle Scholar
Becker, G. (1970). Grundlagen für eine Norm zur Laboratoriumsprüfung mit erdbewohnenden Termiten.—Materialprüfung 12, 293299.Google Scholar
Becker, G. & Lenz, M. (1970). Vermiculit als Bodenmaterial für Versuche und Prüfungen mit Termiten.—Mater. & Org. 5, 129157.Google Scholar
Behr, E. A. (1972). Termite resistance of northern white cedar.—Rep. Mich. agric. Exp. Stn no. 170, 11 pp.Google Scholar
Carter, F. L., Amburgey, T. L. & Manwiller, F. G. (1976). Resistance of 22 southern hardwoods to wood-decay fungi and subterranean termites.—Wood Sci. 8, 223226.Google Scholar
Carte, F. L., Stringer, C. A. & Smythe, R. V. (1972). Survival of six colonies of Reticulitermes flavipes on unfavorable woods.—Ann. ent. Soc. Am. 65, 984985.CrossRefGoogle Scholar
Coudreau, J., Fougerousse, M., Bressy, O. & Lucas, S. (1960). Recherches en vue de déterminer une nouvelle m´thode destinée à apprécier la résistance d'un bois aux destructions causées par les termites (Reticulirermes lucifu gas Rossi).—Holzforschung 14, 4051.CrossRefGoogle Scholar
En (Europäische Norm) (1982). Holzschutzmittel. Bestimmung der Grenze der Wirksamkeit gegenüber Rericulitermes santonensis de Feytaud. Laboratoriumsverfahren. EN 177, Deut. Fassung. Berlin, Beuth Verlag.Google Scholar
Fougerousse, M. & Lucas, S. (1972). Contribution aux recherches pour l'élaboration d'une méthode d'essai de l'efficacité préventive antitermites (Reticulitermes santonensis de Feytaud) des produits de préservation du bois appliqués en impregnation superficielle.—Mater. & Org. 7, 259276.Google Scholar
Gay, F. J., Greaves, T., Holdaway, F. G. & Wetherly, A. H. (1955). Standard laboratory colonies of termites for evaluating the resistance of timber, timber preservatives, and other materials to termite attack.—Bull. Commonw. scient. ind. Res. Org. no. 277, 60 pp.Google Scholar
Haverty, M. I. (1979). Selection of tunneling substrates for laboratory studies with three subterranean termite species.—Sociobiology 4, 315320.Google Scholar
Hinterberger, H. (1976). Polyurethanschaum als Substrat für Prüfungen mit Feuchtholztermiten.—Mater. & Org. 11, 4770.Google Scholar
Howick, C. D. (1975). Influences of specimen size, test period and matrix on the amounts of wood eaten by similar groups of laboratory termites.—Proc. a. Conv. Br. Wood Preserv. Ass. 1975, 5163.Google Scholar
Howick, C. D. (1978). Influence of crowding during transportation on survival and laboratory feeding of termites (Isoptera).—J. Inst. Wood Sci. 8, 2831.Google Scholar
Howick, C. D. & Creffield, J. W. (1975). The development of a standard laboratory bio-assay technique with Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae).—Z. angew.Ent. 78, 126138.Google Scholar
Howick, C. D. & Creffield, J. W. (1979). A comparison of three species of Nasutitermes (Isoptera: Termitidae) as termites for laboratory bioassays.—Int. Biodeterior. Bull. 15, 105112.Google Scholar
Howick, C. D. & Creffield, J. W. (1983). Intraspecific variability in feeding capacity of Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae).—6 pp. int. Res. Grp Wood Preserv. (Doc. No.:IRG/WP/1175). Stockholm.Google Scholar
Hrdy, I. (1964). Laboratory methods for testing the resistance of materials against termites [in Czech].—Rozpr. čsl. Akad. Věd 74, 147.Google Scholar
Kny, U. & Kühne, H. (1982). Suitability of different termite species for laboratory testing.—13 pp. Int. Res. Grp Wood Preserv. (Doc. No.: IRG/WP/1159). Stockholm.Google Scholar
Lenz, M. (1983). Implications for comparability of laboratory experiments revealed in studies on the variability in survival and wood consumption between colonies of Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae).—16 pp. Int. Res. Grp Wood Preserv. (Doc. No.:IRG/WP/1193). Stockholm.Google Scholar
Lenz, M. & Williams, E. R. (1980). Influence of container, matrix volume and group size on survival and feeding activity in species of Coptotermes and Nasutitermes (Isoptera:Rhinotermitidae, Termitidae).—Mater. & Org. 15, 2546.Google Scholar
Lenz, M., Barrett, R. A. & Williams, E. R. (1982). Influence of diet on the survival and wood consumption of Porotermes adamsoni (Froggatt) (Isoptera: Termopsidae) at different temperatures.—Bull. ent. Res. 72, 423435.CrossRefGoogle Scholar
Lenz, M., Becker, G. & Garcia, M. L. (1976). Zur Eignung von verschiedenen Substraten und zu ihrer Auswahl für die Prüfung mit Rhinotermitiden.—Mater. & Org. 11, 121144.Google Scholar
Lund, A. E. (1958). The relationship of subterranean termite attack to varying retentions of water-borne preservatives.—Proc. Am. Wood Preserv. Ass. 54, 4453.Google Scholar
McMahan, E. A. & Watson, J. A. L. (1977). The effect of separation by “papering” on caste ratios in Nasutitermes exitiosus (Hill) (Isoptera).—J. Aust. entomol. Soc. 16, 455457.CrossRefGoogle Scholar
Schultze-Dewitz, G. (1961). Weitere Termitenresistenzprüfungen von Exotenhölzern.—Holzzen traiblati no. 71, 1087–1088.Google Scholar
Schultze-Dewitz, G. (1962). Abhängigkeit des Versuchsergebnisses bei der Termitenprüfung von der Grösse der Prüfgemeinschaft.—Symp. Genet. Biol. Ital. 11, 2431.Google Scholar
Sen-Sarma, P. K. (1963). Methods of testing termite resistance of materials in European laboratories.—J. Soc. Indian For. 3, 5765.Google Scholar
Sen-Sarma, P. K. (1972). Laboratory testing of natural termite resistance of Indian woods.—pp. 814in Roonwal, M. L. (Ed.). Termite problems in India.—81 pp. New Delhi, Counc. Sci. Ind. Res.Google Scholar
Smythe, R. V. (1972). Feeding and survival at constant temperatures by normally and abnormally faunated Reticulitermes virginicus (Isoptera: Rhinotermitidae).—Ann. ent. Soc. Am. 65, 756757.CrossRefGoogle Scholar
Watson, J. A. L. & Abbey, H. M. (in press). Neotenic development in Mastotermes darwiniensis Froggatt: an alternative strategy.—In Caste differentiation in termites (Current Themes in Tropical Science, vol. 3). Oxford, Pergamon Press.Google Scholar
Watson, J. A. L., Ruyooka, D. B. A. & Howick, C. D. (1978). The effect of caste composition on wood consumption in cultures of Nasutitermes exitiosus (Hill) (Isoptera: Termitidae).—Bull. ent. Res. 68, 687694.Google Scholar