Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T01:24:12.668Z Has data issue: false hasContentIssue false

Frequency-dependent prey selection by larvae of Toxorhynchites splendens (Diptera: Culicidae)

Published online by Cambridge University Press:  10 July 2009

D. Dominic Amalraj*
Affiliation:
Vector Control Research Centre, Pondicherry, India
P. K. Das
Affiliation:
Vector Control Research Centre, Pondicherry, India
*
Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry 605 006, India.

Abstract

The foraging behaviour of frequency-dependent prey selection by larval instars of Toxorhynchites splendens (Wiedemann) was studied in the laboratory. Prey size selection (second vs fourth instars of Aedes aegypti Linnaeus or Anopheles stephensi Liston) by third and fourth instar predators was frequency-dependent. However, in the case of second instar predators, prey size selection was not frequency-dependent and the predator preferred second instar to fourth instar prey. When offered second instars of Aedes aegypti and Anopheles stephensi the preference for one species over the other was frequency-dependent in all the three predator instars. The role of frequency-dependent prey selection in the stability of prey—predator interaction at low equilibrium levels is discussed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.A. (1972) Evidence for stabilizing and apostatic selection by wild blackbirds. Nature 237, 348349.CrossRefGoogle ScholarPubMed
Allen, J.A. & Clarke, B.C. (1968) Evidence for apostatic selection on the part of wild passerines. Nature 220, 501502.CrossRefGoogle Scholar
Bradshaw, W.E. & Holzapfel, C.M. (1983) Predator-mediated non-equillibrium coexistence of tree-hole mosquitoes in Southeastern North America. Oecologia 57, 239256.CrossRefGoogle Scholar
Charnov, E.L. (1976) Optimal foraging: attack strategy of a mantid. American Naturalist 110, 141151.CrossRefGoogle Scholar
Clarke, B. (1962) Balanced polymorphism and the diversity of sympatric species, pp. 4770in Nichols, D. (Ed.) Taxonomy and Geography. Oxford, Systematics Association.Google Scholar
Corbet, P.S. & Griffiths, A. (1963) Observation on the aquatic stages of two species of Toxorhynchites (Diptera: Culicidae) in Uganda. Proceedings of the Royal Entomological Society, London 38, 125135.CrossRefGoogle Scholar
Dominic, Amalraj D. (1993) Quantification of attributes related to the biological control potential of Toxorhynchites splendens (Wiedemann, 1819) (Diptera: Culicidae) against mosquito vectors. Unpublished PhD Dissertation, University of Pondicherry, India. 262 pp.Google Scholar
Dukas, R. & Ellner, S. (1993) Information processing and prey detection. Ecology 74, 13371346.CrossRefGoogle Scholar
Emlen, J.M. & Emlen, M.G.R. (1975) Optimal choice in diet: test of a hypothesis. American Naturalist 125, 427435.CrossRefGoogle Scholar
Ernsting, G. & Mulder, A.J. (1981) Components of predatory behaviour underlying density-dependent prey-size selection by Notiophilus biguttatus F. (Carabidae: Coleoptera). Oecologia 51, 169174.CrossRefGoogle ScholarPubMed
Estabrook, G.F. & Dunham, A.E. (1976) Optimum diet as a function of absolute abundance, relative abundance and the relative value of available prey. American Naturalist 110, 401413.CrossRefGoogle Scholar
Focks, D.A., Seawright, J.A. & Hall, D.W. (1978) Laboratory rearing of Toxorhynchites rutilus rutilus on a non-living diet. Mosquito News 38, 325328.Google Scholar
Gabriel, K.R. (1978) A simple method of multiple comparison of means. Journal of the American Statistical Association 73, 724729.CrossRefGoogle Scholar
Garcia, R. (1982) Arthropod predators of mosquitoes. Bulletin of the Society for Vector Ecology 7, 4547.Google Scholar
Ginzburg, L.R. & Resit, Akcakaya (1992) Consequence of ratio dependent predation for steady state properties ecosystem. Ecology 73, 15361543.CrossRefGoogle Scholar
Greenwood, J.J.D. (1984) The functional basis of frequency-dependent food selection. Biological Journal of the Linnaean Society 23, 177199.CrossRefGoogle Scholar
Greenwood, J.J.D. & Elton, R.A. (1979) Analyzing experiments on frequency-dependent selection by predators. Journal of Animal Ecology 48, 721737.CrossRefGoogle Scholar
Holck, A.R. (1988) Current status of the use of predators, pathogens and parasites for the control of mosquitoes. Florida Entomology 71, 537546.CrossRefGoogle Scholar
Horsley, D.T., Lynch, B.M., Greenwood, J.J.D., Hardman, B. & Mosely, S. (1979) Visual selection by birds when the density of prey is high. Journal of Animal Ecology 48, 483490.CrossRefGoogle Scholar
James, S.P. & Liston, W.G. (1985) A monograph of the Anopheles mosquitoes of India. New Delhi, International Books & Periodical Supply Service.Google Scholar
Kazana, M., Machado-Allison, C.E. & Bulla, L.A. (1983) Preferencies alimentarias de Toxorhynchites Theobald (Diptera: Culicidae). Acta Cientifica Venezolana 34, 151158.Google Scholar
Krebs, J.R. (1978) Optimal foraging: decision rules for predators, pp. 2363in Krebs, J.R. & Davies, N.B. (Eds) Behavioural ecology. Oxford, Blackwell Scientific Publications.Google Scholar
Krebs, J.R., Erichsen, J.T., Weber, M.I. & Charnov, E.L. (1977) Optimal prey selection in the great tit Parus major. Animal Behaviour 25, 3038.CrossRefGoogle Scholar
Lounibos, L.P. (1979) Temporal and spatial distribution, growth and predatory behaviour of Toxorhynchites brevipalpis (Diptera: Culicidae) at the Kenya coast. Journal of Animal Ecology 48, 213235.CrossRefGoogle Scholar
Lounibos, L.P., Frank, J.N., MacLado, Allison, Ocanto, P. & Navarro, J.C. (1987) Survival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata. Journal of Tropical Ecology 3, 221242.CrossRefGoogle Scholar
Martin, T.E. (1988) Resource partitioning and the structure of animal communities. ISI Atlas of Science. Plant and Animal Sciences 1, 2024.Google Scholar
Menzie, C.A. (1981) Production ecology of Cricotopus sylvestris (Fabricus) (Diptera: Culicidae) in a shallow estuarine core. Limnology and Oceanography 26, 467481.CrossRefGoogle Scholar
Murdoch, W.W. & Oaten, A. (1975) Predation and population stability. Advances in Ecological Research 9, 1131.CrossRefGoogle Scholar
Murdoch, W.W., Avery, S.L. & Smith, M.E.B. (1975) Switching in predatory fish. Ecology 56, 10901105.CrossRefGoogle Scholar
O'Flynn, M.I. (1975) Life table parameters and population dynamics of Toxorhynchites brevipalpis Theobald (Diptera: Culicidae). Unpublished PhD Dissertation, University of Notre Dame. 102 pp.Google Scholar
Padgett, P.D. & Focks, D.A. (1980) Laboratory observations on the predation of Toxorhynchites rutilus rutilus on Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 17, 466472.CrossRefGoogle ScholarPubMed
Padgett, P.D. & Focks, D.A. (1981) Prey stage preference of the predator Toxorhynchites rutilus rutilus on Aedes aegypti. Mosquito News 41, 6770.Google Scholar
Pulliam, H.R. (1974) On the theory of optimal diets. American Naturalist 108, 5975.CrossRefGoogle Scholar
Pyke, G.H., Pulliam, H.R. & Charnov, E.L. (1977) Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52, 137154.CrossRefGoogle Scholar
Schoener, T.W. (1971) Theory of feeding strategies. Annual Review of Ecology and Systematics 2, 369404.CrossRefGoogle Scholar
Sempala, S.D.K. (1971) Studies on the predatory habits of Toxorhynchites brevipalpis Conradii. East African Virus Research Institute Annual Report 20, 6768.Google Scholar
Sherratt, T.N. & Tikasingh, E.S. (1989) A laboratory investigation of mosquito larval population by Toxorhynchites moctezuma on Aedes aegypti. Medical and Veterinary Entomology 3, 239246.CrossRefGoogle Scholar
Siegfried, C.A. & Knight, A.W. (1976) Prey selection by a setipalpian stonefly nymph Acroneuria (Calineuria) Californica Banks (Plecoptera: Pereidae). Ecology 57, 603608.CrossRefGoogle Scholar
Sih, A. (1980) Optimal foraging: partial consumption of prey. American Naturalist 116, 281290.CrossRefGoogle Scholar
Smith, R.F. & Van den Bosch, K. (1967) Integrated control. pp. 295340in Kilgrove, W.W. & Doutt, R.L. (Eds) Pest Control – biological, physical and selected chemical methods. New York, Academic Press.Google Scholar
Sokal, R.R. & Rohlf, F.J. (1981) Biometry. The principles and practice of statistics in biological research. 2nd edn.New York, W.H. Freeman & Company.Google Scholar
Stephens, D.W., Lynch, J.F., Sorensen, A.E. & Gordon, C. (1986) Preference and profitability: theory and experiment. American Naturalist 127, 533553.CrossRefGoogle Scholar
Zaret, T.M. (1980) Predation and freshwater communities. Yale University Press, New Haven, Connecticut, USA.Google Scholar