Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T13:39:11.264Z Has data issue: false hasContentIssue false

Foraging behaviour of the exotic wasp Vespula germanica (Hymenoptera: Vespidae) on a native caterpillar defoliator

Published online by Cambridge University Press:  19 September 2017

A.L. Pietrantuono*
Affiliation:
CONICET- INTA EEA-Bariloche, Modesta Victoria 4450, CC 277. San Carlos de Bariloche (8400) Río Negro, Argentina
S. Moreyra
Affiliation:
Laboratory Ecotono, INIBIOMA – CONICET- Universidad Nacional del Comahue, Quintral 1250. San Carlos de Bariloche (8400), Río Negro, Argentina
M. Lozada
Affiliation:
Laboratory Ecotono, INIBIOMA – CONICET- Universidad Nacional del Comahue, Quintral 1250. San Carlos de Bariloche (8400), Río Negro, Argentina
*
*Author for correspondence Phone/Fax: (+54 294) 4422731 E-mail: pietrantuono.ana@inta.gob.ar

Abstract

Vespula germanica is a social wasp and an opportunistic predator. While foraging, these wasps learn and integrate different kinds of cues. They have successfully invaded many parts of the world, including native Nothofagus and Lophozonia forests located in the Andean-Patagonian region, where they forage on native arthropods. Perzelia arda, a lepidopteron defoliator of Lophozonia obliqua, uses the foliage to hide in and feed on. The purpose of this work is to study whether V. germanica use olfactory cues when foraging on P. arda. To do this, we used a Y-tube olfactometer and established three treatments to compare pairs of all combinations of stimuli (larvae, leaves with larval traces, and leaves without larval traces) and controls. Data were analysed via two developed models that showed decisions made by V. germanica and allowed to establish a scale of preferences between the stimuli. The analysis demonstrates that V. germanica wasps choose P. arda as larval prey and are capable of discriminating between the offered stimuli (deviance information criterion (DIC) null model = 873.97; DIC simple model = 84.5, n = 152). According to the preference scale, V. germanica preferred leaves with traces of larvae, suggesting its ability to associate these traces with the presence of the prey. This may be because, under natural conditions, larvae are never exposed outside their shelters of leaves and therefore V. germanica uses indirect signals. The presence of V. germanica foraging on P. arda highlights the flexible foraging behaviour of this wasp which may also act as a positive biological control, reducing lepidopteran populations.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agelopoulos, N.G., Dicke, M. & Posthumus, M.A. (1995) Role of volatile inforchemicals emitted by feces of larvae in host-.searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): a behavioral and chemical study. Journal of Chemical Ecology 21(11), 17891811.Google Scholar
Angulo, O. & O'Mahony, M. (2009) Las pruebas de preferencia en alimentos son más complejas de lo imaginado. Interciencia 34(3), 177181.Google Scholar
Beggs, J.R. & Rees, J.S. (1999) Restructuring of Lepidoptera communities by introduces Vespula wasps in a New Zealand beech forest. Oecologia 119, 565571.CrossRefGoogle Scholar
Beggs, J.R., Brockerhoff, E.G., Corley, J.C., Kenis, M., Masciocchi, M., Muller, F., Rome, Q. & Villeman, C. (2011) Ecological effects and management of invasive alien Vespidae. BioControl 56, 505526.CrossRefGoogle Scholar
Bergelson, J.M. & Lawton, J.H. (1988) Does foliage damage influence predation on the insect herbivores of birch? Ecology 69, 434445.CrossRefGoogle Scholar
Bradley, R.A. & Terry, M.E. (1952) Rank analysis of incomplete block designs. I. The method of paired comparisons. Biometrika 39, 324345.Google Scholar
Brockerhoff, E.G., Barratt, B.I., Beggs, J.R., Fagan, L.L., Kay, M.K., Phillips, C.B. & Vink, C.J. (2010) Impacts of exotic invertebrates on New Zealand's indigenous species and ecosystems. New Zealand Journal of Ecology 34(1), 158174.Google Scholar
Brodmann, J., Twele, R., Fracke, W., Hölzler, G., Zhang, Q.H. & Ayasse, M. (2008) Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Current Biology 18(10), 740744.CrossRefGoogle ScholarPubMed
Carrillo, R. & Cerda, L. (1987) Zoofitófagos en Nothofagus chilenos. Bosque 8(2), 99103.Google Scholar
Chuche, J., Xuéreb, A. & Thiéry, D. (2006) Attraction of Dibrachys cavus (Hymenoptera: Pteromalidae) to its host frass volatiles. Journal of Chemical Ecology 32, 27212731.Google Scholar
Cornelius, M.L. (1993) Influence of caterpillar-feeding damage on the foraging behavior of the paper wasp Mischocyttarus flavitarsis (Hymenoptera: Vespidae). Journal of Insect Behavior 6, 771781.Google Scholar
D'Adamo, P. & Lozada, M. (2003) The importance of location and visual cues during foraging in the German wasp (Vespula germanica F.) (Hymenoptera: Vespidae). New Zealand Journal of Zoology 30, 171174.Google Scholar
D'Adamo, P. & Lozada, M. (2007) Foraging behavior related to habitat characteristics in the invasive wasp Vespula germanica. Insect Sciences 14, 383388.Google Scholar
D'Adamo, P. & Lozada, M. (2008) Foraging behaviour in Vespula germanica wasps re-locating a food source. New Zealand Journal of Zoology 35, 917.Google Scholar
D'Adamo, P. & Lozada, M. (2009) Flexible foraging behavior in the invasive social wasp Vespula germanica (Hymenoptera: Vespidae). Annals of the Entomological Society of America 102, 11091115.CrossRefGoogle Scholar
D'Adamo, P. & Lozada, M. (2011) Cognitive plasticity in foraging Vespula germanica wasps. Journal of Insect Science 11(103), 111.Google Scholar
D'Adamo, P. & Lozada, M. (2014) How context modification can favor the release of past experience in Vespula germanica wasps, enabling the detection of a novel food site. Journal of Insect Behavior 27, 395402.Google Scholar
D'Adamo, P., Sackmann, P., Lozada, M. & Corley, J.C. (2000) Local enhancement in the wasp Vespula germanica. Are visual cues all that matter? Insectes Sociaux 4, 289291. DOI: 10.1007/PL00001717.Google Scholar
D'Adamo, P., Sackman, P., Rabinovich, M. & Corley, J.C. (2002) The potential distribution of German wasps (Vespula germanica) in Argentina. New Zealand Journal of Zoology 29, 7985.Google Scholar
Davis, M.A. (2009) Invasion Biology. Oxford, UK, Oxford University Press.Google Scholar
Donoso, P., Donoso, C., Gallo, L., Azpilicueta, M.M., Baldini, A. & Escobar, B. (2006) Nothofagus Obliqua (Mirb.) Oerst. Roble, Pellín, Hualle. pp. 471–485 in Donoso, C. (ed) Las especies arbóreas de los bosques templados de Chile y Argentina. Valdivia, Chile, Autoecología.Google Scholar
El-Sayed, A.M., Manning, L.A., Unelius, C.R., Park, K.C., Stringer, L.D., White, N., Bunn, B., Twidle, A. & Suckling, D.M. (2009) Attraction and antennal response of the common wasp, Vespula vulgaris (L.), to selected synthetic chemicals in New Zealand beech forests. Pest Management Science 65(9), 975981.Google Scholar
Ellison, A.M. (2004) Bayesian inference in ecology. Ecology Letters 7, 509520.Google Scholar
Farji-Brener, A. & Corley, J.C. (1998) Successful invasions of hymenopteran insects into NW Patagonia. Ecología Austral 8, 237249.Google Scholar
Free, J.B. (1970) The behavior of wasps (Vespula germanica L. and V. Vulgaris L.) when foraging. Insectes Sociaux 17, 1120.Google Scholar
Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (2004) Bayesian Data Analysis. 2nd edn. EE UU, Boca Raton, Chapman & Hall.Google Scholar
Geweke, J. (1992) Evaluating the accuracy of sampling based approaches to calculating posterior moments. pp. 169193 in Bernardo, J.M., Berger, J., David, A.P. & Smith, J.F.M. (Eds) Bayesian Statistics. Volume 4. Oxford, Oxford University Press.Google Scholar
Gould, W.F. & Jeanne, R.L. (1984) Polistes wasps (Hymenoptera: Vespidae) as control agents for lepidopteran cabbage pests. Environmental Entomology 13, 150156.CrossRefGoogle Scholar
Harris, R.J. (1991) Diet of the wasps Vespula vulgaris and V. Germanica in honeydew beech forest of the South Island, New Zealand. New Zealand Journal of Zoology 18(2), 159169.Google Scholar
Heenan, P.B. & Smissen, R.D. (2013) Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146, 131.CrossRefGoogle Scholar
Hendrichs, J., Katsoyannos, B.I., Wornoayporn, V., Hendrichs, M.A. (1999) Odour-mediated foraging by yellowjacket wasps (Hymenoptera: Vespidae): predation on leks of pheromone-calling Mediterranean fruit fly males (Diptera: Tephritidae). Oecologia 99, 8894.Google Scholar
Jones, M.T., Castellanos, I. & Weiss, M.R. (2002) Do leaf shelters always protect larvae from invertebrate predators? Ecological Entomology 27, 753757.Google Scholar
Lawson, F.R., Rabb, R.L., Guthrie, F.E. & Bowery, T.G. (1961) Studies of an integrated control system for hornworms and tobacco. Journal of Economical Entomology 54, 9397.Google Scholar
Lipovetsky, S. (2007) Thurstone scaling in order statistics. Mathematical and Computer modeling 45, 917926.Google Scholar
Lozada, M. & D'Adamo, P. (2009) How does an invasive social wasp deal with changing contextual cues while foraging? Environmental Entomology 38, 803808.Google Scholar
Lozada, M. & D'Adamo, P. (2014) Learning in an exotic social wasp while relocating a food source. Journal of Physiology- Paris 108, 187193.Google Scholar
Masciocchi, M., Farji-Brener, A.G. & Sackmann, P. (2010) Competition for food between the exotic wasp Vespula germanica and the native ant assemblage of NW Patagonia: evidence of biotic resistance? Biological Invasions 12, 625631. DOI: 10.1007/s10530-009-9469-5.CrossRefGoogle Scholar
Matthews, R.W. & Matthews, J.R. (2010) Insect Behavior. 2nd edn. New York, Springer, 514pp.CrossRefGoogle Scholar
McNamara, J.M., Green, R.F. & Olsson, O. (2006) Bayes theorem and its applications in animal behavior. Oikos 112, 243251.CrossRefGoogle Scholar
McQuillan, P.B. (1993) Nothofagus (fagaceae) and its invertebrate fauna- an overview and preliminary synthesis. Biological Journal of the Linnean Society 49, 317354.Google Scholar
Moller, H., Tilley, J.A.V., Alspach, P., Millar, I.R. & Plunkett, G.M. (1988) Impact of Vespula wasps on native insects and birds: first year research report. Ecology Division Report No. 13, DSIR, New Zealand.Google Scholar
Moreyra, S., D'Adamo, P. & Lozada, M. (2006) Odour and visual cues utilised by German yellowjackets (Vespula germanica) while relocating protein or carbohydrate resources. Australian Journal of Zoology 54, 393397.Google Scholar
Moreyra, S., D'Adamo, P. & Lozada, M. (2012) Cognitive processes in Vespula germanica wasps (Hymenoptera: Vespidae) when relocating a food source. Annals of the Entomological Society of America 105(1), 128133.Google Scholar
Moreyra, S., D'Adamo, P. & Lozada, M. (2014) The influence of past experience on wasp choice related to foraging behavior. Insect Sciences 21, 759764.Google Scholar
Moreyra, S., D'Adamo, P. & Lozada, M. (2016) Learning in Vespula germanica social wasps: situations of unpredictable food locations. Insectes Sociaux 63, 381384.CrossRefGoogle Scholar
Papaj, D.R. & Lewis, A.C. 1993. Insect Learning: Ecology and Evolutionary Perspectives. New York, Springer Science+Business Media Dordrecht, Chapman & Hall.Google Scholar
Papaj, D.R., Prokopy, R.J., McDonald, P.T. & Wong, T.T.Y. (1987) Differences in learning between wild and laboratory Ceratitis capitata flies. Entomologia Experimentalis et Applicata 45(1), 6572.Google Scholar
Patil, A., Huard, D. & Fonnesbeck, C.J. (2010) PyMC: Bayesian stochastic modeling in Python. Journal of Statistical Software 35, 181.Google Scholar
Pereira, A.J., Masciocchi, M., Bruzzone, O. & Corley, J.C. (2013) Field preferences of the social wasp Vespula germanica (Hymenoptera: Vespidae) for protein-rich baits. Journal of Insect Behavior 26, 730739.CrossRefGoogle Scholar
Pietrantuono, A.L., Fernandez-Arhex, V. & Bruzzone, O.A. (2014) First study of host-plant preferences of Sinopla perpunctatus (Hemiptera: Acanthosomatidae) a stink bug from Andean-patagonic forest. Florida Entomologist 97, 534539.Google Scholar
Pietrantuono, A.L., Enriquez, A., Fernandez-Arhex, V. & Bruzzone, O.A. (2015) Substrates preference for pupation on sawfly Notofenusa surosa (Hymenoptera: Tenthredinidae). Journal of Insect Behavior 28, 257267.Google Scholar
Pietrantuono, A.L., Bruzzone, O.A. & Fernández-Arhex, V. (2017) The role of leaf cellulose content in determining host plant preferences of three defoliating insects present in the Andean-Patagonian forest. Austral Ecology 42(4), 433441. DOI: 10.1111/aec.12460.CrossRefGoogle Scholar
Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L. & Kaplan, I. (2011) Insect Ecology: Behavior, Population and Communities. New York, University Press Cambridge.Google Scholar
Raveret Richter, M.A. (1990) Hunting social wasp interactions: influence of prey size, arrival order, and wasp species. Ecology 71, 10181030.Google Scholar
Raveret Richter, M. & Tisch, V.L. (1999) Presence, size, and species of resident social wasps (Hymenoptera: Vespidae) influence resource choice by foragers. Insectes Sociaux 46, 131136.Google Scholar
Raveret Richter, M.A. & Jeanne, R.L. (1985) Predatory behavior of Polybia sericea (Olivier), a tropical social wasp (Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology 16, 165170.Google Scholar
Sackmann, P., D'Adamo, P., Rabinovich, M. & Corley, J.C. (2000) Arthropod prey foraged by the German wasp (Vespula germanica) in NW Patagonia, Argentina. New Zealand Entomologist 23, 5559.Google Scholar
Sackmann, P., Farji-Brener, A. & Corley, J. (2008) The impact of an exotic social wasp (Vespula germanica) on the native arthropod community of north-west Patagonia, Argentina: an experimental study. Ecological Entomology 33, 213224.Google Scholar
Spradbery, P. (1973). Wasps: An Account of the Biology and Natural History of Solitary and Social Wasps. Seattle, WA, University of Washington Press.Google Scholar
Stevens, S.S. (1946) On the theory of scales of measurement. Science 103, 677680.CrossRefGoogle ScholarPubMed
Thurstone, L.L. (1927/1994) A law of comparative judgment. Psychological Review 101, 266270.Google Scholar
Tsukida, K. & Gupta, M.R. (2011) How to Analyze Paired Comparison Data. UWEE Technical report. USA, University of Washington.Google Scholar
Turlings, T.C.J., Wäckers, F.L., Vet, L.E.M., Lewis, W.J. & Tumlinson, J.H. (1993) Learning of host-finding cues by hymenopterous parasitoids. Ecological and Evolutionary Perspectives 3, 5178.Google Scholar
Valone, T.J. (2006) Are animals capable of Bayesian updating? An empirical review. Oikos 112, 252256.Google Scholar
Vet, L.E.M. (1999) From chemical to population ecology: infochemical use in an evolutionary context. Journal of Chemical Ecology 25(1), 3149.Google Scholar
Vet, L.E.M. & Dicke, M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology 37, 141172.Google Scholar
Vet, L.E.M., Wäckers, F.L. & Dicke, M. (1991) How to hunt for hiding hosts: the reliability-detectability problem in foraging parasitoids. Netherlands Journal of Zoology 41(2–3), 202213.CrossRefGoogle Scholar
Wilson-Rankin, E.E. (2015) Level of experience modulates individual foraging strategies of an invasive predatory wasp. Behavioral Ecology and Sociobiology 69, 491499.Google Scholar