Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-17T09:36:13.387Z Has data issue: false hasContentIssue false

Feeding responses and digestive function of Spodoptera littoralis (Boisd) on various leafy vegetables exhibit possible tolerance traits

Published online by Cambridge University Press:  15 March 2023

Seyedeh Masoumeh Hosseini Mousavi
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Seyed Ali Hemmati*
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Arash Rasekh
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
*
Author for correspondence: Seyed Ali Hemmati, Email: sa.hemmati@scu.ac.ir

Abstract

Spodoptera littoralis is a highly polyphagous pest that attacks numerous important crops in the world and causes substantial economic losses to agricultural production. In the present study, the effects of different leafy vegetables, including Purslane, Chives, Parsley, Basil, Dill, Coriander, and Mint, were investigated on feeding responses and enzymatic activities of S. littoralis under laboratory conditions. Furthermore, the total contents of the three major secondary metabolites (phenolics, anthocyanins, and flavonoids) in the studied vegetables were determined. Our findings showed that the lowest and the highest approximate digestibility were on Basil and Purslane, respectively. The highest values of efficiency of conversion of ingested and digested food were achieved in larvae fed on Chives and Coriander, respectively, whereas the lowest values were recorded after feeding on Purslane. The highest and lowest relative growth rates were in larvae reared on Dill and Purslane, respectively. Furthermore, the highest amylolytic and proteolytic activities were in larvae fed with Coriander and Dill, respectively, while the lowest activities of these enzymes were on Purslane. In addition, correlation analysis revealed significant correlations between feeding characteristics and enzymatic activity of S. littoralis with biochemical compounds of the studied leafy vegetables. Our results suggest that Coriander is a suitable host, while Purslane displayed tolerance traits against S. littoralis, which can be used in sustainable management programs aiming to reduce chemical inputs.

Type
Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A, Gorski, PM and Tallamy, DW (1999) Polymorphism in plant defense against herbivory: constitutive and induced resistance in Cucumis sativa. Journal of Chemical Ecology 25, 22852304.CrossRefGoogle Scholar
Awmack, CS and Leather, SR (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817844.CrossRefGoogle ScholarPubMed
Azab, SG, Sadek, MM and Crailsheim, K (2001) Protein metabolism in larvae of the cotton leaf-worm Spodoptera littoralis (Lepidoptera: Noctuidae) and its response to three mycotoxins. Environmental Entomology 30, 817823.CrossRefGoogle Scholar
Babamir-Satehi, A, Habibpour, B, Aghdam, HR and Hemmati, SA (2022) Interaction between feeding efficiency and digestive physiology of the pink stem borer, Sesamia cretica Lederer (Lepidoptera: Noctuidae), and biochemical compounds of different sugarcane cultivars. Arthropod-Plant Interactions 16, 309316.CrossRefGoogle Scholar
Barton Browne, LB and Raubenheimer, D (2003) Ontogenetic changes in the rate of ingestion and estimates of food consumption in fourth and fifth instar Helicoverpa armigera caterpillars. Journal of Insect Physiology 49, 6371.CrossRefGoogle ScholarPubMed
Batista Pereira, GL, Petacci, F, Fernandes, BJ, Correa, AG, Vieira, PC, Fatima da Silva, M and Malaspina, O (2002) Biological activity of astilbin from Dimorphandra mollis against Anticarsia gemmatalis and Spodoptera frugiperda. Pest Management Science 58, 503507.CrossRefGoogle ScholarPubMed
Bernfeld, P (1955) Amylase, α and β. Methods in Enzymology 1, 149158.CrossRefGoogle Scholar
Biggs, DR and Mcgregor, PG (1996) Gut pH and amylase and protease activity in larvae of the New Zealand grass grub (Costelytra zealandica; Coleoptera: Scarabaeidae) as a basis for selecting inhibitors. Insect Biochemistry and Molecular Biology 26, 6975.CrossRefGoogle Scholar
Elpidina, EN, Vinokurov, KS, Gromenko, VA, Rudenshaya, YA, Dunaevsky, YE and Zhuzhikov, DP (2001) Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Archives of Insect Biochemistry and Physiology 48, 206216.CrossRefGoogle ScholarPubMed
Franco, OL, Rigden, DJ, Melo, FR and Grossi-de-Sá, MF (2002) Plant α-amylase inhibitors and their interaction with insect α-amylases: structure, function and potential for crop protection. European Journal of Biochemistry 269, 397412.CrossRefGoogle Scholar
Gacemi, A, Taibi, A, Abed, NEH, M'hammedi Bouzina, M, Bellague, D and Tarmoul, K (2019) Effect of four host plants on nutritional performance of cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Crop Protection 8, 361371.Google Scholar
Golizadeh, A and Abedi, Z (2017) Feeding performance and life table parameters of Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on various barley cultivars. Bulletin of Entomological Research 107, 689698.CrossRefGoogle ScholarPubMed
Harvey, JA (2005) Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomologia Experimentalis et Applicata 117, 113.CrossRefGoogle Scholar
Harvey, JA, Gols, R, Wagenaar, R and Bezemer, TM (2007) Development of an insect herbivore and its pupal parasitoid reflect differences in direct plant defense. Journal of Chemical Ecology 33, 15561569.CrossRefGoogle ScholarPubMed
Hemati, SA, Naseri, B, Nouri-Ganbalani, G, Rafiee-Dastjerdi, H and Golizadeh, A (2012 a) Effect of different host plants on nutritional indices of the pod borer, Helicoverpa armigera. Journal of Insect Science 12, 55.CrossRefGoogle ScholarPubMed
Hemati, SA, Naseri, B, Nouri-Ganbalani, G, Rafiee-Dastjerdi, H and Golizadeh, A (2012 b) Digestive proteolytic and amylolytic activities and feeding responses of Helicoverpa armigera (Noctuidae: Lepidoptera) on different host plants. Journal of Economic Entomology 105, 14391446.CrossRefGoogle ScholarPubMed
Hemmati, SA, Sajedi, RH, Moharramipour, S, Taghdir, M, Rahmani, H, Etezad, SM and Mehrabadi, M (2017) Biochemical characterization and structural analysis of trypsin from Plodia interpunctella midgut: implication of determinants in extremely alkaline pH activity profile: trypsin from Indianmeal moth. Physiological Entomology 42, 307318.CrossRefGoogle Scholar
Hemmati, SA, Takalloo, Z, Taghdir, M, Mehrabadi, M, Balalaei, S, Moharramipour, S and Sajedi, RH (2021) The trypsin inhibitor pro-peptide induces toxic effects in Indianmeal moth, Plodia interpunctella. Pesticide Biochemistry and Physiology 171, 104730.CrossRefGoogle ScholarPubMed
Hemmati, SA, Shishehbor, P and Stelinski, LL (2022) Life table parameters and digestive enzyme activity of Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae) on selected legume cultivars. Insects 13, 661.CrossRefGoogle ScholarPubMed
Hosseini Mousavi, SM, Hemmati, SA and Rasekh, A (2022) Effect of different leafy vegetables on the biological and population growth characteristics of the cotton leafworm, Spodoptera littoralis (Boisd). Journal of Entomological Society of Iran 41, 365383.Google Scholar
Ingram, WR (1975) Improving control of the vegetable armyworm. PANS 21, 162167.Google Scholar
Ismail, SM (2020) Effect of sublethal doses of some insecticides and their role on detoxication enzymes and protein-content of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Bulletin of the National Research Centre 44, 35.CrossRefGoogle Scholar
Khafagi, WE, Hegazi, M and Neama, AA (2016) Effects of temperature on the development, food consumption and utilization parameters of the last two larval instars of Spodoptera littoralis (Boisd.). Journal of Agricultural Science and Food Technology 2, 9399.Google Scholar
Khedr, MA, AL-Shannaf, HM, Mead, HM and Shaker, SA (2015) Comparative study to determine food consumption of cotton leafworm, Spodoptera littoralis, on some cotton genotypes. Journal of Plant Protection Research 55, 312321.CrossRefGoogle Scholar
Kim, DO, Chun, OK, Kim, YJ, Moon, HY and Lee, CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agricultural and Food Chemistry 516, 5096515.Google Scholar
Kotkar, HM, Sarate, PJ, Tamhane, VA, Gupta, VS and Giri, AP (2009) Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. Journal of Insect Physiology 55, 663670.CrossRefGoogle ScholarPubMed
Ladhari, A, Laarif, A, Omezzine, F and Haouala, R (2013) Effect of the extracts of the spiderflower, Cleome arabica, on feeding and survival of larvae of the cotton leafworm, Spodoptera littoralis. Journal of Insect Science 13, 61.CrossRefGoogle ScholarPubMed
Lanzoni, A, Bazzocchi, GG, Reggiori, F, Rama, F, Sannino, L, Maini, S and Burgio, G (2012) Spodoptera littoralis male capture suppression in processing spinach using two kinds of synthetic sex-pheromone dispensers. Bulletin of Insectology 65, 311318.Google Scholar
Lazarevic, J and Peric-Mataruga, V (2003) Nutritive stress effects on growth and digestive physiology of Lymantria dispar larvae. Yugoslav Medical Biochemistry 22, 5359.Google Scholar
Natesh, HN, Abbey, L and Asiedu, SK (2017) An overview of nutritional and antinutritional factors in green leafy vegetables. Horticulture International Journal 1, 00011.CrossRefGoogle Scholar
Price, PW, Bouton, CE, Gross, P, McPheron, BA, Thompson, JN and Weis, AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11, 4165.CrossRefGoogle Scholar
Scriber, JM and Slansky, F (1981) The nutritional ecology of immature insects. Annual Review of Entomology 26, 183211.CrossRefGoogle Scholar
Sharma, HC and Ortiz, R (2002) Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation. Journal of Environmental Biology 23, 111135.Google ScholarPubMed
Shishehbor, P and Hemmati, SA (2022) Investigation of secondary metabolites in bean cultivars and their impact on the nutritional performance of Spodoptera littoralis (Lep.: Noctuidae). Bulletin of Entomological Research 112, 378388.CrossRefGoogle Scholar
Slinkard, K and Singleton, VL (1997) Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture 28, 4955.CrossRefGoogle Scholar
Sneh, B, Schuster, S and Broza, M (1981) Insecticidal activity of Bacillus thuringiensis strains against the Egyptian cotton leafworm Spodoptera littoralis (Lep.: Noctuidae). Entomophaga 26, 179190.CrossRefGoogle Scholar
Thomas, MB (1999) Ecological approaches and the development of “truly integrated” pest management. Proceedings of the National Academy of Sciences 96, 59445951.CrossRefGoogle ScholarPubMed
Waldbauer, GP (1968) The consumption and utilization of food by insects. Advances in Insect Physiology 5, 229288.CrossRefGoogle Scholar
War, AR, Paulraj, MG, War, MY and Ignacimuthu, S (2011) Differential defensive response of groundnut to Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Interactions 6, 111.Google Scholar
Zamani Fard, S, Hemmati, SA, Shishehbor, P and Stelinski, LL (2022) Growth, consumption and digestive enzyme activities of Spodoptera littoralis (Boisd) on various mung bean cultivars reveal potential tolerance traits. Journal of Applied Entomology 146, 11451154.CrossRefGoogle Scholar
Zhishen, J, Mengcheng, T and Jianming, W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64, 555559.CrossRefGoogle Scholar