Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T13:20:18.768Z Has data issue: false hasContentIssue false

DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae)

Published online by Cambridge University Press:  28 January 2011

D.-S. Park
Affiliation:
Biological Resource Center, KRIBB, Daejeon 305-806, Korea
S.-J. Suh
Affiliation:
Youngnam Regional Office, National Plant Quarantine Service, Busan 600-016, Korea
P.D.N. Hebert
Affiliation:
Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
H.-W. Oh*
Affiliation:
Industrial Biomaterials Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
K.-J. Hong*
Affiliation:
Central Post-entry Quarantine Station, National Plant Quarantine Service, 433-1 Anyang 6-dong Manan-gu Anyang-shi, Gyeonggi Province, 430-016, Korea
*
*Authors for correspondence Fax: +82-42-860-4677 (H.-W.O);+82-31-420-7606 (K.-J.H.) E-mail: hwoh@kribb.re.kr

Abstract

Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, S.G. & Kurland, C.G. (1998) Reductive evolution of resident genomes. Trends in Microbiology 6(7), 263268.CrossRefGoogle ScholarPubMed
Baumann, L. & Baumann, P. (2005) Cospeciation between the primary endosymbionts of mealybugs and their hosts. Current Microbiology 50, 8487.CrossRefGoogle ScholarPubMed
Ben-Dov, Y., Miller, D.R. & Gibson, G.A.P. (2006) ScaleNet: a database of the scale insects of the world. United States Department of Agriculture (USDA), Beltsville, MD. Available online at http://www.sel.barc.usda.gov/scalenet/scalenet.htm (accessed 9 December 2010).Google Scholar
Beuning, L.L., Murphy, P., Wu, E., Batchelor, T.A. & Morris, B.A. (1999) Molecular-based approach to the differentiation of mealybug (Hemiptera: Pseudococcidae) species. Journal of Economic Entomology 92, 463472.CrossRefGoogle Scholar
Downie, D.A. & Gullan, P.J. (2004) Phylogenetic analysis of mealybugs (Hemiptera: Coccoidea: Pseudococcidae) based on DNA sequences from three nuclear genes, and a review of the higher classification. Systematic Entomology 29, 238259.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. & Hebert, P.D. (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences USA 103, 968971.CrossRefGoogle ScholarPubMed
Hebert, P.D. & Gregory, T.R. (2005) The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852859.CrossRefGoogle ScholarPubMed
Hebert, P.D., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of Biological Sciences 270, 313321.Google Scholar
Hebert, P.D., Ratnasingham, S. & deWaard, J.R. (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the National Academy of Sciences USA 270 Supplement 1, S9699.Google ScholarPubMed
Ivanova, N.V., deWaard, J.R. & Hebert, P.D.N. (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6, 9981002.CrossRefGoogle Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Kondo, T., Gullan, P.J. & Williams, D.J. (2008) Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Revista Corpoica - Cienciay Technologia Agropecuaria 9, 5561.CrossRefGoogle Scholar
Malausa, T., Fenis, A., Warot, S., Germain, J.-F., Ris, N., Prado, E., Botton, M., Vanlerberghe-Masutti, F., Sforza, R., Cruaud, C., Couloux, A. & Kreiter, P. (2010) DNA markers to disentangle complexes of cryptic taxa in mealybugs (Hemiptera: Pseudococcidae). Journal of Applied Entomology (doi: 10.1111/j.1439-0418.2009.01495.x).Google Scholar
Min, X.J. & Hickey, D.A. (2007) DNA barcodes provide a quick preview of mitochondrial genome composition. PLoS One 2, e325.CrossRefGoogle ScholarPubMed
Moran, N.A. & Wernegreen, J.J. (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends in Ecology & Evolution 15, 321326.CrossRefGoogle ScholarPubMed
Moran, N.A., McCutcheon, J.P. & Nakabachi, A. (2008) Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42, 165190.CrossRefGoogle ScholarPubMed
Morse, G.E. & Normark, B.B. (2006) A molecular phylogenetic study of armoured scale insects (Hemiptera: Diaspididae). Systematic Entomology 31, 338349.CrossRefGoogle Scholar
Park, D.-S., Suh, S.-J., Oh, H.-W. & Hebert, P.D.N. (2010a) Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers. BMC Genomics 11, 423.CrossRefGoogle ScholarPubMed
Park, D.S., Leem, Y.J., Hahn, K.W., Suh, S.J., Hong, K.J. & Oh, H.W. (2010b) Molecular identification of mealybugs (Hemiptera: Pseudococcidae) found on Korean pears. Journal of Economic Entomology 103, 2533.CrossRefGoogle ScholarPubMed
Perez-Brocal, V., Gil, R., Ramos, S., Lamelas, A., Postigo, M., Michelena, J.M., Silva, F.J., Moya, A. & Latorre, A. (2006) A small microbial genome: the end of a long symbiotic relationship? Science 314, 312313.CrossRefGoogle ScholarPubMed
Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System? (http://www.barcodinglife.org). Molecular Ecology Notes 7, 355364.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology & Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thao, M.L., Gullan, P.J. & Baumann, P. (2002) Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Applied and Environmental Microbiology 68, 31903197.CrossRefGoogle ScholarPubMed
Supplementary material: File

Park Supplementary Material

Park Supplementary Data 01

Download Park Supplementary Material(File)
File 601.6 KB
Supplementary material: File

Park Supplementary Material

Park Supplementary Data 02

Download Park Supplementary Material(File)
File 3.3 MB
Supplementary material: PDF

Park Supplementary Material

Park Supplementary Data 03

Download Park Supplementary Material(PDF)
PDF 72.8 KB