Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T05:05:52.676Z Has data issue: false hasContentIssue false

Distribution of mosquitoes in relation to urban landscape characteristics

Published online by Cambridge University Press:  05 May 2009

R.M. Gleiser*
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba Cátedra de Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba and CONICET
L.P. Zalazar
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba
*
*Author for correspondence Fax: +54 351 4334118 E-mail: rgleiser@crean.agro.uncor.edu

Abstract

The current global increase in prevalence of vector borne diseases, as well as an expansion of tropical infections to more temperate zones, justifies further studies on vector populations. Urban areas may favour viral transmission to humans through close contacts between the vectors and the vertebrate hosts, and also affecting mosquito populations by offering larval habitat, refuges and adequate microclimates to survive the winter. This work analyses the spatial distribution of potential vector mosquitoes in relation to landscape characteristics in an urban environment in a temperate climate region. Mosquitoes were trapped monthly from October 2005 to March 2006 in 25 sites within Córdoba city and suburbs with miniature light traps+CO2. Nine species were collected, and the most abundant were Culex quinquefasciatus (37.1%), C. apicinus (26.6%) and Aedes aegypti (13.9%). Species that may be involved in SLEv transmission were recorded throughout the sampling. C. quinquefasciatus was detected in 92% of the sites; however, only two sites showed consistently larger collections. The site of highest C. quinquefasciatus abundance was located within an area of high Saint Louis Encefalitis virus prevalence and risk of infection, further supporting this species involvement as a vector. Significant correlations were detected between land cover characteristics and abundance of C. apicinus, C. interfor and C. maxi that were consistent with previous knowledge about their larval habitat and domestic preferences, which may be useful for targeting vector control operations.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almirón, W.R. (1992) Bionomía y taxonomía de los principales mosquitos (Diptera: Culicidae) recolectados en Córdoba, con particular énfasis en el genero Culex Linnaeus, 1758. PhD thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba.Google Scholar
Almirón, W.R. & Brewer, M. (1995) Preferencia de hospedadores de Culicidae (Diptera) recolectados en el centro de la Argentina. Revista de Saúde Pública 29, 108114.CrossRefGoogle Scholar
Almirón, W.R. & Brewer, M. (1996) Classification of immature stage habitats of Culicidae (Diptera) collected in Cordoba, Argentina. Memórias do Instituto Oswaldo Cruz 9, 19.CrossRefGoogle Scholar
Darsie, R.F. Jr (1985) Mosquitoes of Argentina. Part I. Keys for identification of adult females and fourth stage larvae in English and Spanish (Diptera: Culicidae). Mosquito Systematics 17, 153253.Google Scholar
Diaz, L.A., , V., Almirón, W., Farías, A., Vazquez, A., Sanchez-Seco, M.P., Aguilar, J., Spinsanti, L., Konigheim, B., Visintín, A., García, J., Morales, M.A., Tenorio, A. & Contigiani, M. (2006) Genotype III Saint Louis encephalitis virus outbreak, Argentina, 2005. Emerging Infectious Diseases 12, 17521754.CrossRefGoogle ScholarPubMed
Eastman, J.R. (2006) IDRISI Andes Edition ©1987–2006, Clark University Web, http://www.clarklabs.org.Google Scholar
Estallo, E., Lamfri, M.A., Scavuzzo, C.M., Ludueña, Almeida F.F., Introini, M.V., Zaidenberg, M. & Almirón, W.R. (2008) Models for predicting Aedes aegypti larval indices based on satellite images and climatic variables. Journal of the American Mosquito Control Association 24, 368376.CrossRefGoogle ScholarPubMed
Ezenwa, V.O., Godsey, M.S., King, R.J. & Guptill, S.C. (2006) Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proceedings of the Royal Society 273, 109117.Google ScholarPubMed
Getis, A., Morrison, A.C., Gray, K. & Scott, T.W. (2003) Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene 69, 494505.CrossRefGoogle ScholarPubMed
Gleiser, R.M. & Gorla, D.E. (2007) Predicting the spatial distribution of Ochlerotatus albifasciatus (Diptera: Culicidae) abundance with NOAA imagery. Bulletin of Entomological Research 97, 607612.CrossRefGoogle ScholarPubMed
Gleiser, R.M., Gorla, D.E. & Schelotto, G. (2002) Spatial pattern of abundance of the mosquito, Ochlerotatus albifasciatus, in relation to habitat characteristics. Medical and Veterinary Entomology 16, 364371.CrossRefGoogle ScholarPubMed
Gubler, D.J. (2002) The global emergence/resurgence of arboviral diseases as public health problems. Archives of Medical Research 33, 330342.CrossRefGoogle ScholarPubMed
Hay, S.I., Graham, A. & Rogers, D.J. (2006) Advances in Parasitology: Global Mapping of Infectious Diseases. Vol. 462, 399 pp. London, Academic Press.Google Scholar
INDEC (2001) http://www.indec.mecon.gov.ar/ (accessed 21 September 2007).Google Scholar
Jacob, B.G., Regens, J.L., Mbogo, C.M., Githeko, A.K., Keating, J., Swalm, C.M., Gunter, J.T., Githure, J.I. & Beier, J.C. (2003) Occurrence and distribution of Anopheles (Diptera: Culicidae) larval habitats on land cover change sites in urban Kisumu and urban Malindi, Kenya. Journal of Medical Entomology 40, 777784.CrossRefGoogle Scholar
Jarsún, B., Gorgas, J.A., Zamora, E., Bosnero, E., Lovera, E., Ravelo, A. & Tassile, J.L. (2003) Caracterización general de la provincia. pp. 2360 in Gorjas, J.A. & Tassile, J.L. (Eds) Recursos Naturales de la Provincia de Córdoba. Los Suelos. Córdoba, BR Copias, Agencia Córdoba Ambiente e INTA.Google Scholar
Leisnham, P.T., Lester, P.J., Slaney, D.P. & Weinstein, P. (2004) Anthropogenic landscape change and vectors in New Zealand: effects of shade and nutrient levels on mosquito productivity. EcoHealth 1, 306316.CrossRefGoogle Scholar
Liew, C. & Curtis, C.F. (2004) Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Medical and Veterinary Entomology 18, 351360.CrossRefGoogle ScholarPubMed
Lourenço-de-Oliveira, R., Castro, M.G., Braks, M.A.H. & Lounibos, L.P. (2004) The invasion of urban forest by dengue vectors in Rio de Janeiro. Journal of Vector Ecology 29, 94100.Google ScholarPubMed
Marzluff, J.M., Bowman, R. & Donelly, R.E. (Eds) (2001) Avian Ecology and Conservation in an Urbanizing World. 608 pp. Norwell, MA, Kluwer Academic.CrossRefGoogle Scholar
Masuoka, P.M., Claborn, D.M., Andre, R.G., Nigro, J., Gordon, S.W., Klein, T.A. & Kim, H-C. (2003) Use of IKONOS and Landsat for malaria control in the Republic of Korea. Remote Sensing of the Environment 88, 187194.CrossRefGoogle Scholar
Mitchell, C.J., Monath, T.P. & Sabattini, M. (1980) Transmission of St. Louis encephalitis virus from Argentina by mosquitoes of the Culex pipiens (Diptera: Culicidae) complex. Journal of Medical Entomology 17, 282285.CrossRefGoogle ScholarPubMed
Morales, M.A., Barrandeguy, M., Fabbri, C., Garcia, J.B., Vissani, A., Trono, K., Gutierrez, G., Pigretti, S., Menchaca, H., Garrido, N., Taylor, N., Fernandez, F., Levin, S. & Enria, D. (2006) West Nile virus isolation from equines in Argentina, 2006. Emerging Infectious Diseases 12, 15591561.CrossRefGoogle ScholarPubMed
Nicholson, M.C. & Mather, T.N. (1996) Methods for evaluating Lyme disease risks using Geographic Infomation Systems and Geospatial Analysis. Journal of Medical Entomology 33, 713720.CrossRefGoogle Scholar
Pires, D.A. & Gleiser, R.M. (2007) Cuerpos de agua temporarios y permanentes como hábitats larvales de mosquitos (Díptera: Culicidae) en la ciudad de Córdoba. Biología Acuática 23, 68.Google Scholar
ProMED-Mail (2006) West Nile virus update 2006 – Western Hemisphere (23): Argentina: First case. Archive number 20061228.3642, http://www.promedmail.org.Google Scholar
Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A.C., Panning, M., Cordioli, P., Fortuna, C., Boros, S., Magurano, F., Silvi, G., Angelini, P., Dottori, M., Ciufolini, M.G., Majori, G.C. & Cassone, A. (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 18401846.CrossRefGoogle Scholar
Ribeiro, M.C., Seulu, F., Abose, T., Kidane, G. & Teklehaimanot, A. (1996) Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bulletin of the World Health Organization 74, 299305.Google Scholar
Ruiz, M.O., Walker, E.D., Foster, E.S., Haramis, L.D. & Kitron, U.D. (2007) Association of West Nile virus illness and urban landscapes in Chicago and Detroit. International Journal of Health Geographics 6, 10.CrossRefGoogle Scholar
Service, M.W. (1993) Mosquito Ecology: Field sampling methods. 2nd edn. 750 pp. Dordrecht, The Netherlands, Kluwer Academic Publishers.Google Scholar
Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. & Hay, S.I. (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214217.CrossRefGoogle ScholarPubMed
Spinsanti, L.I., Farías, A.A., Aguilar, J., Díaz, M.P., Ghisiglieri, S., Bustos, M.A., Vilches, N., Gonzalez, B. & Contigiani, M.S. (2007) Risk factors associated with St. Louis encephalitis seroprevalence in two populations from Córdoba, Argentina. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 12481252.CrossRefGoogle ScholarPubMed
Stein, M., Oria, G.I. & Almirón, W.R. (2002) Principales criaderos para Aedes aegypti y culícidos asociados, Argentina. Revista de Saúde Pública 36, 627630.CrossRefGoogle Scholar
Tucker, C.J. & Sellers, P.J. (1986) Satellite remote sensing of primary production. International Journal of Remote Sensing 7, 13951416.CrossRefGoogle Scholar
Vezzani, D., Rubio, A., Velazquez, S.M., Schweigmann, N. & Wiegand, T. (2005) Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Tropica 95, 123131.CrossRefGoogle ScholarPubMed
WHO (2002) Dengue and dengue hemorrhagic fever. World Health Organization fact sheet No. 117. http://www.who.int/mediacentre/factsheets/fs117/en/index.html.Google Scholar
Zhou, G., Munga, S., Minakawa, N., Githeko, A.K. & Yan, G. (2007) Spatial relationship between adult malaria vector abundance and environmental factors in Western Kenya Highlands. American Journal of Tropical Medicine and Hygiene 77, 2935.CrossRefGoogle ScholarPubMed