Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T18:32:45.105Z Has data issue: false hasContentIssue false

Diapause and overwintering of the carrot fly, Psila rosae (F.) (Diptera: Psilidae)

Published online by Cambridge University Press:  10 July 2009

A. J. Burn
Affiliation:
Department of Applied Biology, Pembroke Street, Cambridge CB2 3DX, UK
T. H. Coaker
Affiliation:
Department of Applied Biology, Pembroke Street, Cambridge CB2 3DX, UK

Abstract

Psila rosae (F.) overwinters in Britain in both the larval and pupal stages. Overwintering pupae formed in October and November at soil temperatures of between 10 and 16°C entered diapause. A period of similar temperature in the laboratory during the prepupal stage also caused pupae to enter diapause. Overwintering larvae continued to feed and gain weight; they pupated in early spring at soil temperatures of 2–8°C but did not enter diapause. The sensitivity to diapause-inducing conditions decreased between November and March, associated with changes in developmental temperatures and pupal weight. The differential effects of temperature on larval, pupal and diapause development together serve to synchronise adult emergence from the overwintering population. The mechanisms which allow overwintering by a variable proportion of larvae and pupae also provide the opportunity for the development of a third generation of adult flies in October and November.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biernaux, J. (1968). Observations sur l'hibernation de Psila rosae F.—Bull. Rech. agron. Gembloux 3, 241248.Google Scholar
Bradshaw, W. E. (1970). Interaction of food and photoperiod in the termination of larval diapause in Chaoborus americanus (Diptera: Culicidae).—Dial. Bull. mar. biol. Lab., Woods Hole 139, 476484.Google Scholar
Brunel, E. & Missonnier, J. (1968). Etude du développement nymphal de Psila rosae Fab. (Diptères Psilidés) en conditions naturelles et expérimentales: quiescence et diapause.—C. r. Séanc. Soc. Biol. 162, 22232228.Google Scholar
Coppock, L. J. (1974). Notes on the biology of carrot fly in Eastern England.—Pl. Path. 23, 93100.CrossRefGoogle Scholar
Hughes, R. D. (1960). Induction of diapause in Erioischia brassicae Bouchè (Dipt., Anthomyiidae).—J. exp. Biol. 37, 218223.Google Scholar
Jørgensen, J. & Thygesen, T. (1968). Gulerodsfluen, Psila rosae F.—Tidsskr. PlAvl 72, 125.Google Scholar
McClanahan, R. J. & Niemczyk, H. D. (1963). Continuous rearing of the carrot rust fly, Psila rosae (Fab.).—Can. Ent. 95, 827830.Google Scholar
Naton, E. (1966). Voraussetzungen für eine Laborzucht der echten Möhrenfliege, Psila rosae Fabr.—Anz. Schädlingsk. 39, 8589.Google Scholar
Read, D. C. (1969). Rearing the cabbage maggot with and without diapause.—Can Ent. 101, 725737.CrossRefGoogle Scholar
Städler, E. (1970). Beitrag zur Kenntnis der Diapause bei der Möhrenfliege (Psila rosae Fabr., Diptera: Psilidae).—Mitt. schweiz. ent. Ges. 43, 1737.Google Scholar
Tauber, M. J. & Tauber, C. A. (1976). Insect seasonality: diapause maintenance, termination, and postdiapause development.—A. Rev. Ent. 21, 81107.Google Scholar
Van 'T Sant, L. E. (1961). Levenswijze en bestrijding van de wortelvlieg (Psila rosae F.) in Nederland.—Versl. landbouwk. Onderz. Ned. 67, 1131.Google Scholar
Wright, D. W. & Ashby, D. G. (1946). Bionomics of the carrot fly (Psila rosae Fab.). II. Soil populations of carrot fly during autumn, winter and pring.—Ann. appl. Biol. 33, 263270.Google Scholar