Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:27:15.693Z Has data issue: false hasContentIssue false

Detection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humuli (Schrank) (Hemiptera: Aphididae)

Published online by Cambridge University Press:  10 July 2009

A. L. Devonshire
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., UK
G. D. Moores
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., UK
R. H. Ffrench-Constant
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts., UK

Abstract

An antiserum was prepared against carboxylesterase E4, the enzyme conferring resistance in Myzus persicae (Sulzer) to a wide range of insecticides, and the immunoglobulin G (IgG) fraction was purified from it by affinity chromotography. Interactions of the antiserum and IgG with aphid homogenates and the purified esterase proteins were studied by immune diffusion, immunoelectrophoresis and enzyme-linked immunosorbent assay (ELISA). In M. persicae, the interactions were specific for E4 and its closely-related mutant form, FE4, and except for Phorodon humuli (Schrank), there was no cross-reaction with homogenates of the nine other aphid species examined. These studies confirmed the quantitative changes in E4 protein previously reported and established that the increased esterase activity in P. humuli also arises from the production of more protein, or proteins, homologous to E4. Resistance of M. persicae could be characterized by immunoelectrophoresis even after preservation of the insects in 30% ethanol. Although ELISA could also be used to identify resistance, a simpler immunoplate assay was developed based on measuring the esterase activity of E4 retained when the enzyme bound to IgG. This assay discriminates well between the three resistant M. persicae variants common in the field in the UK, and its simplicity allows the study of large numbers of insects.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (1979). Affinity chromatography: principles and methods.—Pharmacia Fine Chemicals.Google Scholar
Barbara, D. J. & Clark, M. F. (1982). A simple indirect ELISA using F(ab')2 fragments of immunoglobulin.—Jnl gen. Virol. 58, 315322.CrossRefGoogle ScholarPubMed
Beranek, A. P. (1974). Esterase variation and organophosphate resistance in populations of Aphis fabae and Myzus persicae.—Entomologia exp. appl. 17, 129142.CrossRefGoogle Scholar
Blackman, R. L., Devonshire, A. L. & Sawicki, R. M. (1977). Co-inheritance of increased carboxylesterase activity and resistance to organophosphorus insecticides in Myzus persicae (Sulzer).—Pestic. Sci. 8, 163166.CrossRefGoogle Scholar
Blackman, R. L. & Takada, H. (1975). A naturally occurring chromosomal translocation in Myzus persicae (Sulzer).—J. Entomol 50, 147156.Google Scholar
Devonshire, A. L. (1975). Studies of the carboxylesterases of Myzus persicae resistant and susceptible to organophosphorus insecticides.—pp. 67–73 in Proceedings of the Eighth British Insecticide and Fungicide Conference, 17th to 20th 11 1975, Hotel Metropole, Brighton, England. Volume 1.—pp. 1372. London, Br. Crop Prot. Coun.Google Scholar
Devonshire, A. L. (1977). The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance.—Biochem. J. 167, 675683.CrossRefGoogle ScholarPubMed
Devonshire, A. L. & Moores, G. D. (1982). A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae).—Pestic. Biochem. & Physiol. 18, 235246.CrossRefGoogle Scholar
Devonshire, A. L. & Moores, G. D. (1984). Immunoassay of carboxylesterase activity for identifying insecticide resistant Myzus persicae.—pp. 515–520 in 1984 British Crop Protection Conference. Pests and diseases. Proceedings of a conference held at Brighton Metropole, England, 11 19–22, 1984. Volume 2.—pp. 395846. Croydon, UK, Br. Crop Prot. Coun.Google Scholar
Devonshire, A. L., Moores, G. D. & Chiang, C. L. (1983). The biochemistry of insecticide resistance in the peach-potato aphid, Myzus persicae.—pp. 191–196 in Miyamoto, J., Kearney, P. C., Matsunaka, D. H. & Murphy, S. D. (Eds.). Pesticide chemistry: human welfare and the environment. Proceedings of the 5th International Congress of Pesticide Chemistry, Kyoto, Japan, 29 08-4 09 1982. Volume 3. Mode of action, metabolism and toxicology.—569 pp. Oxford, Pergamon.Google Scholar
Devonshire, A. L. & Sawicki, R. M. (1979). Insecticide-resistant Myzus persicae as an example of evolution by gene duplication.—Nature, Lond. 280, 140141.CrossRefGoogle Scholar
Devonshire, A. L., Searle, L. M. & Moores, G. D. (1986). Quantitative and qualitative variation in the mRNA for carboxylesterases in insecticide-susceptible and resistant Myzus persicae (Sulz.).—Insect Biochem.CrossRefGoogle Scholar
Hamilton, J. T., Attia, F. I. & Hughes, P. B. (1981). Multiple resistance in Myzus persicae (Sulzer) in Australia.—Gen. appl. Ent. 13, 6568.Google Scholar
Laurell, C. B. (1966). Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies.—Analyt. Biochem. 15, 4552.CrossRefGoogle ScholarPubMed
Lewis, G. A. & Madge, D. S. (1984). Esterase activity and associated insecticide resistance in the damson-hop aphid, Phorodon humuli (Schrank) (Hemiptera: Aphididae).—Bull. ent. Res. 74, 227238.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.—J. biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Ross, G. J. S. (1970). The efficient use of function minimisation in non-linear maximum likelihood estimation.—Appl. Statist. 19, 205221.CrossRefGoogle Scholar
Ross, G. J. S. (1975). Simple non-linear modelling for the general user.—pp. 585–593 in Proc. 40th Session Int. Statistical Inst. 2. Int. Statistical Inst., Warsaw.Google Scholar
Sawicki, R. M. (1981). Les phénomènes de résistance.—pp. 83–87 in Journées d'études et d'information: les pucerons des cultures.—351 pp. Paris, Association de Coordination Technique Agricole.Google Scholar
Sawicki, R. M., Devonshire, A. L., Payne, R. W. & Petzing, S. M. (1980). Stability of insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer).—Pestic. Sci. 11, 3342.CrossRefGoogle Scholar
Sawicki, R. M., Devonshire, A. L., Rice, A. D., Moores, G. D., Petzing, S. M. & Cameron, A. (1978). The detection and distribution of organophosphorus and carbamate insecticide resistant Myzus persicae (Sulzer) in Britain in 1976.—Pestic. Sci. 9, 189201.CrossRefGoogle Scholar
Takada, H. (1979). Esterase variation in Japanese populations of Myzus persicae (Sulzer) (Homoptera: Aphididae), with special reference to resistance to organophosphorus insecticides.—Appl. Entomol. & Zool. 14, 245255.CrossRefGoogle Scholar
Taylor, L. R. (1974). Monitoring change in the distribution and abundance of insects.—Rep. Rothamsted Exp. Stn 1973 (2), 202239.Google Scholar
Wachendorff, U. & Klingauf, F. (1978). Esterasetest zur Diagnose von Insecktizidresistenz bei Aphiden.—Z. PflKrankh. PflSchutz 85, 218227.Google Scholar
Weir, D. M. (Ed.) (1978). Handbook of experimental immunology. Volume 2.—Oxford & Edinburgh, Blackwell.Google Scholar
Woiwod, I. P., Tatchell, G. M. & Barrett, A. M. (1984). A system for the rapid collection, analysis and dissemination of aphid-monitoring data from suction traps.—Crop. Prot. 3, 273288.CrossRefGoogle Scholar