Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-23T15:45:47.089Z Has data issue: false hasContentIssue false

Influence of temperature and humidity on populations of Callosobruchus maculatus (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Pteromalidae) in two climatic zones of Burkina Faso

Published online by Cambridge University Press:  10 July 2009

P. A. Ouedraogo
Affiliation:
Laboratoire d'Entomologie Appliquée, Université de Ouagadougou, Burkina Faso
S. Sou
Affiliation:
Laboratoire d'Entomologie Appliquée, Université de Ouagadougou, Burkina Faso
A. Sanon
Affiliation:
Laboratoire d'Entomologie Appliquée, Université de Ouagadougou, Burkina Faso
J. P. Monge
Affiliation:
Institut de Biocénotique Expérimentale des Agrosystèmes, Université de Tours, France
J. Huignard
Affiliation:
Institut de Biocénotique Expérimentale des Agrosystèmes, Université de Tours, France
B. Tran
Affiliation:
School of Biological Sciences, Royal Holloway, University of London, Egham, UK
P. F. Credland*
Affiliation:
School of Biological Sciences, Royal Holloway, University of London, Egham, UK
*
Division of Biology, School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.

Abstract

Callosobruchus maculatus (Fabricius) develops in the seeds of Vigna unguiculata in the Sahel region of Africa. The reproductive activity of this species and the development of its offspring were studied during the dry season at Ouagadougou and Bobo Dioulasso (Burkina Faso), two zones with different climatic conditions. The length of imaginal life of the females and the developmental time varied with changes in climatic conditions, the lowest values for both parameters being found at the end of the dry season when temperature and humidity increased. In the two zones, variations in the density of the bruchid populations have been studied in experimental stores. The density of the bruchid population was low at the beginning of the study and increased when temperature and humidity rose. The introduction of Dinarmus basalis (Rondani) adults to the stores caused a significant reduction in the numbers of C. maculatus adults. The density of the D. basalis populations was low from December to February and increased when temperatures and then humidity became higher. The increase of the D. basalis population and the rate of parasitism were greater at Bobo Dioulasso than at Ouagadougou. Laboratory studies have demonstrated that fecundity, duration of adult life and developmental times depend on humidity. This study has shown the importance of local climatic conditions on parasitoid reproduction and development and also in the control of bruchid populations in stores.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbogast, R.T. (1984) Biological control of stored-product insects: status and prospects, pp 225238in Baur, F.D. (Ed.) Insect Management for food storage and processing. Minnesota, The American Association of Cereal Chemist.Google Scholar
Begon, M., Harper, J.L. & Townsend, C.R. (1990) Ecology: individuals, populations and communities. 2nd edn.943 pp. Oxford, Blackwell.Google Scholar
Bellows, T.S. Jr. (1982) Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera, Bruchidae). Journal of Animal Ecology 51, 236287.Google Scholar
Burnett, T. (1954) Influences of natural temperatures and controlled host densities on oviposition of an insect parasite. Physiological Zoology 27, 239248.Google Scholar
Caswell, G. (1961) The infestation of cowpeas in the Western region of Nigeria. Tropical Sciences 3, 154158.Google Scholar
Credland, P.F., Dick, K.M. & Wright, A.W. (1986) Relationships between larval density, adult size and egg production in the cowpea beetle Callosobruchus maculatus. Ecological Entomology 11, 4150.Google Scholar
Finlayson, L.H. (1950) The biology of Cephalonomia waterstoni Gahan (Hym., Bethylidae) a parasite of Laemophloeus (Coleoptera, Cucujidae). Bulletin of Entomological Research 41, 7997.Google Scholar
Flinn, P.W. (1991) Temperature-dependent functional response of the parasitoid Cephalonomia waterstoni (Hym. Bethylidae) attacking rusty grain beetle larvae. Environmental Entomology 20, 872876.Google Scholar
Flinn, P.W. & Hagstrum, D.W. (1990) Simulations comparing the effectiveness of various stored-grain management practices used to control Rhyzopertha dominica. Environmental Entomology 19, 725729.Google Scholar
Giga, D.P. & Smith, R.H. (1983) Comparative life history studies of four Callosobruchus spp. infesting cowpea with special reference to Callosobruchus rhodesianus. Journal of Stored Products Research 19, 189198.Google Scholar
Gomez-Alvarez, L.E. (1980) Etudes de quelques aspects de la biologie d'un chalcidien Dinarmus basalis ectoparasite de bruchidae nécessaires à l'étude du taux sexuel. Thèse de l'Université de Tours, 96 pp.Google Scholar
Hassell, M.P. (1986) Parasitoids and population regulation, pp. 201224in Waage, J. & Greathead, D. (Eds) Insect parasitoids. London, Academic Press (Symposium of the Royal Entomological Society No. 13).Google Scholar
Howe, R.N. (1965) A summary of estimates of optimal and minimal conditions for population increase of some stored product insects. Journal of Stored Products Research 1, 177184.Google Scholar
Howe, R.N. & Currie, J.E. (1964) Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. Bulletin of Entomological Research 55, 437477.Google Scholar
Huignard, J., Leroi, B., Alzouma, I. & Germain, J.F. (1985) Oviposition and development of B. atrolineatus in Vigna unguiculata cultures in sahelian zone. Insect Science and Application 6, 691699.Google Scholar
Larson, A.O. & Fisher, C.K. (1924) Longevity and fecundity in Bruchus quadrimaculatus influenced by different foods. Journal of Agricultural Research 29, 287305.Google Scholar
Lenga, A., Thibeaudeau, C. & Huignard, J. (1991) Influence of thermoperiod and photoperiod on the reproductive diapause in Bruchidius atrolineatus. Physiological Entomology 16, 295303.Google Scholar
Lèvêque, L., Monge, J.P., Rousse, D., van Alebeek, F.A.N. & Huignard, J. (1993) Analysis of multiparasitism by Eupelmus vuilleti (Eupelmidae) and Dinarmus basalis (Pteromalidae) in the presence of one of their common hosts, Bruchidius atrolineatus (Coleoptera: Bruchidae). Oecologia 94, 272277.Google Scholar
Mack, T.P., Bajusz, B.A., Nolan, E.S. & Smilowitz, S. (1981) Development of a temperature-mediated functional response equation. Environmental Entomology 10, 573579.Google Scholar
Messenger, P.S. (1968) Bioclimatic studies of the aphid parasite Praon exsoletum. Effects of temperature on the functional response of females to varying host densities. Canadian Entomologist 100, 728740.Google Scholar
Messina, F.J. & Renwick, J.A.A. (1985) Dispersal polymorphism of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae): Variation among populations in response to crowding. Annals of the Entomological Society of America 78, 201206.Google Scholar
Mitchell, R. (1975) The evolution of oviposition tactics in the bean weevil, Callosobruchus maculatus (F.). Ecology 56, 696702.Google Scholar
Monge, J.P. & Huignard, J. (1991) Population fluctuations of two bruchid species Callosobruchus maculatus and Bruchidius atrolineatus (Coleoptera, Bruchidae) and their parasitoids Dinarmus basalis and Eupelmus vuilleti in a storage situation in Niger. Journal of African Zoology 105, 187196.Google Scholar
Monge, J.P., Dupont, P. & Huignard, J. (1995) The consequences of the interspecific competition between Dinarmus basalis and Eupelmus vuilleti on the development of their host populations. Acta Oecologia 16, 1930.Google Scholar
Rasplus, J.Y. (1988) La communauté parasitaire des Coléoptères séminivores de Légumineuses dans une mosdïque forêt-savane en Afrique de l'Ouest. Thèse de l'Université de Paris XI. 433 pp.Google Scholar
Sinha, R.N. (1973) Interrelations of physical, chemical and biological variables in the deterioration of stored grains, in Sinha, R.N. & Muvi, W.E. (Eds) Grain storage part of system. Westport Avi.Google Scholar
Smith, L. (1992) Effect of temperature on life history characteristics of Anisopteromalus calandrae parasitizing maize weevil larvae in corn kernels. Environmental Entomology 21, 877887.Google Scholar
Smith, L. (1993) Effect of humidity on life history characteristics of Anisopteromalus calandrae parasitizing maize weevil larvae in shelled corn. Environmental Entomology 22, 618624.Google Scholar
Smith, L. (1994) Temperature influences functional response of Anisopteromalus calandrae parasitizing maize weevil larvae in shelled corn. Annals of the Entomological Society of America 87, 849855.Google Scholar
Stamopoulos, D. & Huignard, J. (1980) L'influence des diverses parties de la graine de haricot Phaseolus vulgaris sur le développement des larves d'Acanthoscelides obtectus. Entomologia Experimentalis et Applicata 28, 3846.Google Scholar
Utida, S. (1972) Density-dependent polymorphism in the adult Callosobruchus maculatus (Coleoptera, Bruchidae). Journal of Stored Products Research 8, 111126.Google Scholar
van Huis, A. (1991) Biological methods of bruchids control in the tropics: a review. Insect Science and Application 12, 87102.Google Scholar
Williams, R.N. & Floyd, E.H. (1971) Effect of two parasites, Anisopteromalus calandrae and Choetospila elegans, upon populations of the maize weevil under laboratory and natural conditions. Journal of Economical Entomology 64, 14071408.Google Scholar