Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.334 Render date: 2022-08-16T20:28:16.389Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Diverse non-crop vegetation assemblages as banker plants for predatory mites in strawberry crop

Published online by Cambridge University Press:  23 November 2021

Fernando Teruhiko Hata*
Affiliation:
Departamento de Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
Pedro Henrique Togni
Affiliation:
Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
Maurício Ursi Ventura
Affiliation:
Departamento de Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
José Eduardo Poloni da Silva
Affiliation:
Departamento de Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
Nilson Zacarias Ferreira
Affiliation:
Instituto de Desenvolvimento Rural do Paraná, Escritório Local de Maringá, Avenida Bento Munhoz da Rocha Neto, 16, Maringá, Paraná, Brazil
Leonel Constantino
Affiliation:
Departamento de Estatística, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná, Brazil
*
Author for correspondence: Fernando Teruhiko Hata, Email: hata@uel.br

Abstract

Non-crop plant diversity plays a fundamental role in the conservation of predatory mite (PM) and can be proposed as a banker plant system (BPS). BPSs provide plants that host natural enemies in greenhouses or field crops and may improve the efficiency of biological control. The aim of this study was to investigate if a diverse plant composition could be a suitable BPS for PMs in strawberry crops. A plant inventory characterized 22 species of non-crop plants harboring PMs. The most abundant PMs, in decreasing order, were Neoseiulus californicus, Neoseiulus anonymus, Euseius citrifolius, and Euseius concordis. PMs were randomly distributed among plants. We also found specific associations of Phytoseiidae species and phytophagous or generalist mites on plants. Due to this, four species were deemed suitable as banker plants: Capsicum sp., Leonurus sibiricus, Solanum americanum, and Urochloa mutica. Moreover, these plants combined a high PMs density and a low occurrence or absence of pest-mites. This study suggests shifting the traditional view that BPSs are composed of a limited number of species to use plant assemblages. This contributes to both conservation and augmentative biological control.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral, DSSL, Venzon, M, dos Santos, HH, Sujii, ER, Schmidt, JM and Harwood, JD (2016) Non-crop plant communities conserve spider populations in chili pepper agroecosystems. Biological Control 103, 6977.CrossRefGoogle Scholar
Brasil – Lei No. 10831, de 23 de dezembro de 2003. (2003) Available at http://www.planalto.gov.br/ccivil_03/LEIS/2003/L10.831.htm.Google Scholar
Clarke, KR and Warwick, RM (1994) Similarity-based testing for community pattern: the two-way layout with no replication. Marine Biology 118, 167176.CrossRefGoogle Scholar
Crawley, MJ (2007) The R Book. New York, New York: John Wiley & Sons.CrossRefGoogle Scholar
Cruz, WP, Sarmento, RA, Teodoro, AV, Erasmo, EAL, Neto, MP, Ignacio, M and Junior, DFF (2012) Acarofauna em cultivo de pinhão-manso e plantas espontâneas associadas. Pesquisa Agropecuária Brasileira 47, 319327.CrossRefGoogle Scholar
Dainese, M, Martin, EA, Aizen, MA, Albrecht, M, Bartomeus, I, Bommarco, R, Carvalheiro, LGR, Gagic, V, Garibaldi, LA, Ghazoul, J, Grab, H, Jonsson, M, Karp, DS, Kennedy, CM, Kleijn, D, Kremen, C, Landis, DA, Letourneau, DK, Marini, L, Poveda, K, Rader, R, Smith, HG, Tscharntke, T, Andersson, GKS, Badenhausser, I, Baensch, S, Bezerra, ADM, Bianchi, FJJAV, Boreux, V, Bretagnolle, V, Caballero-Lopez, B, Cavigliasso, P, Ćetković, A, Chacoff, NP, Classen, A, Cusser, S, Silva e Silva, FD, Groot, GA, Dudenhöffer, JH, Ekroos, J, Fijen, T, Franck, P, Freitas, BM, Garratt, MPD, Gratton, C, Hipólito, J, Holzschuh, A, Hunt, L, Iverson, AL, Jha, S, Keasar, T, Kim, TN, Kishinevsky, M, Klatt, BK, Klein, AM, Krewenka, KM, Krishnan, S, Larsen, AE, Lavigne, C, Liere, H, Maas, B, Mallinger, RE, Martinez Pachon, E, Martínez-Salinas, A, Meehan, TD, Mitchell, MGE, Molina, GAR, Nesper, M, Nilsson, L, O´Rourke, ME, Peters, MK, Plećaš, M, Potts, SG, Ramos, DL, Rosenheim, JA, Rundlöf, M, Rusch, A, Sáez, A, Scheper, J, Schleuning, M, Schmack, JM, Sciligo, AR, Seymour, C, Stanley, DA, Stewart, R, Stout, JC, Sutter, L, Takada, MB, Taki, H, Tamburini, G, Tschumi, M, Viana, BF, Westphal, C, Willcox, BK, Wratten, SD, Yoshioka, A, Zaragoza-Trello, C, Zhang, W, Zou, Y and Steffan-Dewenter, I (2019) A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances 5, eaax0121.CrossRefGoogle ScholarPubMed
Demite, PR, Feres, RJF and Lofego, AC (2015) Influence of agricultural environment on the plant mite community in forest fragments. Brazilian Journal of Biology 75, 396404.CrossRefGoogle ScholarPubMed
Demite, PR, Moraes, GJ, McMurtry, JA, Denmark, H. and Castilho, RC (2018) Phytoseiidae Database. Available at www.lea.esalq.usp.br/phytoseiidae (accessed 12 Mar 2021).Google Scholar
Ferreira, JAM, Cunha, DFS, Pallini, A, Sabelis, MW and Janssen, A (2008) Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology 36, 435441. https://doi.org/10.1111/j.1365-2311.2011.01286.x.CrossRefGoogle Scholar
Gontijo, LM (2019) Engineering natural enemy shelters to enhance conservation biological control in field crops. Biological control 130, 155163. https://doi.org/10.1016/j.biocontrol.2018.10.014.CrossRefGoogle Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001) Paleontological statistics software package for education and data analyses. Paleontologia Electronica 4, 19.Google Scholar
Huang, N, Enkegaard, A, Osborne, LS, Ramakers, PM, Messelink, GJ, Pijnakker, J and Murphy, G (2011) The banker plant method in biological control. Critical Reviews in Plant Sciences 30, 259278. https://doi.org/10.1080/07352689.2011.572055.CrossRefGoogle Scholar
Instituto Agronômico do Paraná – Iapar (2020) Médias históricas em estações do Iapar<iapar.br/modules/conteudo/conteudo.php?conteudo=1070>..>Google Scholar
Instituto Brasileiro de Geografia e Estatística – IBGE (2004) Mapa de Biomas do Brasil, primeira aproximação. Available at https://ww2.ibge.gov.br/home/presidencia/noticias/21052004biomashtml.shtm Accessed 15 May 2020.Google Scholar
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services – IPBES (2016) Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn.Google Scholar
Krantz, W and Walter, DE (2009) A Manual of Acarology, 3rd Edn. Lubbock, Texas, TX, Tech University Press, p. 807.Google Scholar
Kumar, V, Xiao, Y, McKenzie, CL and Osborne, LS (2015) Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a predator-in-first approach. Experimental and Applied Acarology 65, 465481.CrossRefGoogle Scholar
Lorenzi, H (2014) Manual de identificação e controle de plantas daninhas: plantio direto e convencional. Ed. Nova Odessa: Instituto Plantarum. 379 p.Google Scholar
Marques, RV, Sarmento, RA, Lemos, F, Pedro-Neto, M, Sabelis, MW, Venzon, M, Pallini, A and Janssen, A (2015) Active prey mixing as an explanation for polyphagy in predatory arthropods: synergistic dietary effects on egg production despite a behavioural cost. Functional Ecology 29, 13171324.CrossRefGoogle Scholar
Matthews, TJ and Whittaker, RJ (2015) On the species abundance distribution in applied ecology and biodiversity management. Journal of Applied Ecology 52, 443454.CrossRefGoogle Scholar
McMurtry, JA, Moraes, GJ and Sourassou, NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology 18, 297320.CrossRefGoogle Scholar
Moraes, GJ and Flechtmann, CHW (2008) Manual de Acarologia: Acarologia básica de ácaros em plantas cultivadas no Brasil. Holos Editora, Ribeirão Preto, São Paulo, Brazil.Google Scholar
Ottaviano, MFG, Cédola, CV, Sánchez, NE and Greco, NM (2015) Conservation biological control in strawberry: effect of different pollen on development, survival, and reproduction of Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology 67, 507521.CrossRefGoogle Scholar
Parolin, P, Bresch, C, Ruiz, G, Desneux, N and Poncet, C (2013) Testing banker plants for biological control of mites on roses. Phytoparasitica 41, 249262.CrossRefGoogle Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria. URL. Available at https://www.R-project.org.Google Scholar
Ribeiro, AEL, Gondim Júnior, MGC, Melo, J.W.S. and Delalibera Júnior, I. (2012) Solanum americanum as a reservoir of natural enemies of the tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). International Journal of Acarology 38, 692698.CrossRefGoogle Scholar
Rioja, C, Zhurov, V, Bruinsma, K, Grbic, M and Grbic, V (2017) Plant-herbivore interactions: a case of an extreme generalist, the two-spotted spider mite Tetranychus urticae. Molecular Plant-Microbe Interactions 30, 935945.CrossRefGoogle ScholarPubMed
Ronque, ERV (2010) A Cultura do Morangueiro. Curitiba – Paraná, Instituto Emater, 52p.Google Scholar
Snyder, WE (2019) Give predators a complement: conserving natural enemy biodiversity to improve biocontrol. Biological Control 135, 7382.CrossRefGoogle Scholar
Sorensen, TA (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter 5, 134.Google Scholar
Sun, HZ, Song, YQ and Zhao, JY (2020) Reproductive performance of Aleurocybotus indicus (Hemiptera: Aleyrodidae) fed on different cultivars of rice plants. Phytoparasitica 48, 167174.CrossRefGoogle Scholar
Togni, PHB, Lagôa, ACG, Venzon, M and Sujii, ER (2019 a) Brazilian Legislation leaning towards fast registration of biological control agents to benefit organic agriculture. Neotropical Entomology 48, 175185.CrossRefGoogle ScholarPubMed
Togni, PHB, Venzon, M, Souza, LM, Sousa, AATC, Harterreiten-Souza, ES, Pires, CSS and Sujii, ER (2019 b) Dynamics of predatory and herbivorous insects at the farm scale: the role of cropped and noncropped habitats. Agricultural and Forest Entomology 21, 351362.CrossRefGoogle Scholar
Vacacela Ajila, HE, Colares, F, Lemos, F, Marques, PH, Franklin, EC, Santos do Vale, W, Oliveira, EE, Venzon, M and Pallini, A (2019) Supplementary food for Neoseiulus californicus boosts biological control of Tetranychus urticae on strawberry. Pest Management Science 75, 19861992.CrossRefGoogle ScholarPubMed
Venzon, M, Amaral, DSSL, Togni, PHB and Chiguachi, JAM (2019) Interactions of natural enemies with non-cultivated plants. In Souza, B, Vázquez, L, Marucci, R (eds), Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Switzerland AG, pp. 1526. https://doi.org/10.1007/978-3-030-24733-1_2.CrossRefGoogle Scholar
Wei, T, Simko, V, Levy, M, Xie, Y, Jin, Y and Zemla, J (2017) Package ‘corrplot’. The Statistician 56, e24.Google Scholar
Supplementary material: File

Hata et al. supplementary material

Tables S1 and S2

Download Hata et al. supplementary material(File)
File 55 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Diverse non-crop vegetation assemblages as banker plants for predatory mites in strawberry crop
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Diverse non-crop vegetation assemblages as banker plants for predatory mites in strawberry crop
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Diverse non-crop vegetation assemblages as banker plants for predatory mites in strawberry crop
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *