Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T06:14:03.689Z Has data issue: false hasContentIssue false

Relationship between in vitro gas production and NIRS predicted enzymatic digestibility and chemical composition

Published online by Cambridge University Press:  27 February 2018

A. Piva
Affiliation:
Dipartimento di Morfofisiologia Veterinaria, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
E. Meola
Affiliation:
Dipartimento di Morfofisiologia Veterinaria, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
G. Biagi
Affiliation:
Dipartimento di Morfofisiologia Veterinaria, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
M. Ricchi
Affiliation:
Dipartimento di Morfofisiologia Veterinaria, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
A. Panciroli
Affiliation:
Dipartimento di Morfofisiologia Veterinaria, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
M. Champion
Affiliation:
Limagrain Station Expérimentale de Mons 63203 Riom, France
A. Mordenti
Affiliation:
Dipartimento di Morfofisiologia Veterinaria, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
Get access

Extract

Rumen fermentability of raw materials and foods can be evaluated by different means. Recently a large interest has been generated by the use of in vitro gas production associated with the degradation and fermentation kinetics of forages and concentrates. Measuring and modelling gas production have been studied (Beuvink, 1993) and implemented by automation (Theodorou et al., 1994). This approach has been applied to a variety of foods with different purposes: estimating the effect of maturity on alfalfa and brome hay digestion (Stefanon et al., 1996), evaluating the role of genetic variation on perennial ryegrass rumen fermentation (Loo et al., 1994) and comparing rice-straw fermentability (Williams et al., 1996).

This research has been designed to rank maize silages according to their fermentability and to evaluate possible correlation to the near infrared reflectance spectroscopy (NIRS) predicted wet chemistry values and in vivo calculated organic matter digestibility (OMD).

Type
Posters
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieu, J., Demarquilly, C., Dardenne, P., Barrière, Y., Lila, M., Maupetit, P., Rivière, F. and Femenias, N. 1993. Composition and nutritive value of whole maize plants fed fresh to sheep. I. Factors of variation. Annales de Zootechnie 42: 221249.CrossRefGoogle Scholar
Beuvink, J. M. W. 1993. Measuring and modelling in-vitro gas production kinetics to evaluate ruminal fermentation of feedstuffs. Thesis, Landbouwuniversiteit, Wageningen, The Netherlands.Google Scholar
Loo, E. N. van, , Reheul, D., Cone, J. W., Snijders, C. H. A., Reheul, D. and Ghesquiere, A. 1994. Genetic variation in perennial ryegrass for gas production during in vitro rumen fermentation. Breeding for quality. Proceedings of the 19th EUCARPIA fodder crops section meeting held in Brugge, Belgium, 5-8 October 1994, EUCARPIA, Wageningen, The Netherlands, pp. 3541.Google Scholar
McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemistry Journal 43: 99109.CrossRefGoogle ScholarPubMed
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. and Schneider, W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro . Journal of Agricultural Science, Cambridge 93: 217222.CrossRefGoogle Scholar
Piva, A., Panciroli, A., Meola, E. and Formigoni, A. 1996. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets. Journal of Nutrition 126: 280289.CrossRefGoogle ScholarPubMed
Schofield, P., Pitt, R. E. and Pell, A. N. 1994. Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science 72: 29802991.CrossRefGoogle ScholarPubMed
Stefanon, B., Pell, A. N. and Schofield, P. 1996. Effect of maturity on digestion kinetics of water-soluble and water-insoluble fractions of alfalfa and brome hay. Journal of Animal Science 74: 11041115.CrossRefGoogle ScholarPubMed
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. and France, J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48: 185197.CrossRefGoogle Scholar
Williams, B. A., Chuzaemi, S., Soebarinoto, J., Bruchem, J. van, , Boer, H. and Tamminga, S. 1996. A comparison of ten rice-straw varieties grown at two different altitudes during a wet and a dry season, using the in vitro cumulative gas production technique. Animal Feed Science and Technology 57: 183194.CrossRefGoogle Scholar
Zwietering, M. H., Jongenburger, I., Rombouts, F. M. and Riet, K. van't, . 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology 56: 18751881.CrossRefGoogle ScholarPubMed
Zwietering, M. H., Rombouts, F. M. and Riet, K. van't, . 1992. Comparison of definitions of the lag phase and the exponential phase in bacterial growth. Journal of Applied Bacteriology 72: 139145.CrossRefGoogle ScholarPubMed