Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-28T08:47:38.304Z Has data issue: false hasContentIssue false

Zinc, copper and manganese in the alimentary tract of sheep

Published online by Cambridge University Press:  09 March 2007

I. Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB29 SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The changes in the concentrations and solubilities of zinc, manganese and copper in the rumen, abomasum and along the small intestine of cannulated sheep, maintained on dried grass, have been determined. Relationships between the solubilities of the metals and the pH values of the samples were observed.

2. The pattern of change of solubilities could be reproduced in vitro by adjustment of the pH of rumen and abomasal samples.

3. By a combination of gel filtration and continuous-flow high-voltage electrophoretic techniques it was shown that soluble complexes of Zn and Mn occur in the rumen and lower regions of the small intestine. The soluble Zn and Mn in the abomasum, duodenum and upper jejunum appeared to exist in ionic form. The charge and molecular size of these complexes were found to be dependent on the pH of the samples.

4. From detergent treatment of rumen samples it appeared that much of the insoluble metal, particularly Cu, might be associated with microbial matter.

5. The significance of these findings and their relationship to the differences noted in the apparent requirements for trace elements of ruminants on different diets is discussed.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

REFERENCES

Arora, S. P., Hatfield, E. E., Garrigus, U. S., Lohman, T. G. & Doane, B. B. (1969). J. Nutr. 97, 25.CrossRefGoogle Scholar
Bosman, M. S. M. (1964). Jaarb. Inst. biol. scheik. Onderz. LandbGewass., 1964, p. 125.Google Scholar
Bremner, I. & Knight, A. H. (1970). Br. J. Nutr. 24, 279.CrossRefGoogle Scholar
Brown, E. B. & Rother, M. L. (1963). J. Lab. clin. Med. 62, 357.Google Scholar
Chaberek, S. & Martell, A. E. (1959). In Organic Sequestering Agents. New York: John Wiley and Sons Inc.Google Scholar
Davis, P. S., Luke, C. G. & Deller, D. J. (1966). Lancet ii, 1431.CrossRefGoogle Scholar
Dowdy, R. P., Herman, Y. F. & Sauberlich, H. E. (1969). Proc. Soc. exp. Biol. Med. 130, 1294.CrossRefGoogle Scholar
Dowdy, R. P. & Matrone, G. (1968 a). J. Nutr. 95, 191.CrossRefGoogle Scholar
Dowdy, R. P. & Matrone, G. (1968 b). J. Nutr. 95, 197.CrossRefGoogle Scholar
Kroe, D. J., Kaufman, N., Klavins, J. V. & Kinney, T. D. (1966). Am. J. Physiol. 211, 414.CrossRefGoogle Scholar
Mason, V. C. (1969). J. agric. Sci., Camb. 73, 99.CrossRefGoogle Scholar
Mitchell, R. L. & Tosic, J. (1949). J. gen. Microbiol. 3, xvi.CrossRefGoogle Scholar
Mills, C. F. (1958). Soil Sci. 85, 100.CrossRefGoogle Scholar
Perrin, D. D. (1965). Nature, Land. 206, 170.CrossRefGoogle Scholar
Porter, H., Johnston, J. & Porter, E. M. (1962). Biochim. biophys. Acta 65, 66.CrossRefGoogle Scholar
Saltman, P. (1965). J. chem. Educ. 42, 682.CrossRefGoogle Scholar
Starcher, B. C. (1969). J. Nutr. 97, 321.CrossRefGoogle Scholar
Storry, J. E. (1961). J. agric. Sci., Camb. 57, 97.CrossRefGoogle Scholar
Topps, J. H., Kay, R. N. B. & Goodall, E. D. (1968). Br. J. Nutr. 22, 261.CrossRefGoogle Scholar
Van Campen, D. R. & Mitchell, E. A. (1965). J. Nutr. 86, 120.CrossRefGoogle Scholar
Weston, R. H. & Kastelic, J. (1967). Aust. J. biol. Sci. 20, 975.CrossRefGoogle Scholar