Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T12:54:44.775Z Has data issue: false hasContentIssue false

Growth, ascorbic acid and iron contents of tissues of young guinea-pigs whose dams received high or low levels of dietary ascorbic acid or Fe during pregnancy and suckling

Published online by Cambridge University Press:  09 March 2007

C. J. Bates
Affiliation:
MRC Dunn Nutritional Laboratory, Downham's Lane, Milton Road, Cambridge CB4 IXJ
T. D. Cowen
Affiliation:
MRC Dunn Nutritional Laboratory, Downham's Lane, Milton Road, Cambridge CB4 IXJ
Harumi Tsuchiya
Affiliation:
MRC Dunn Nutritional Laboratory, Downham's Lane, Milton Road, Cambridge CB4 IXJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Guinea-pig dams were fed on purified diets containing high (5 g/kg diet plus 1 g/l drinking water) or moderate (0.5 g/kg diet) levels of ascorbic acid, in combination with high (1 g/kg diet) or moderate (0.043 g/kg diet) levels of iron, during pregnancy and suckling. Their offsprings' diets contained 0.1 g ascorbic acid/kg and 0.04 g Fe/kg.

2. High ascorbic acid intake clearly enhanced both tissue ascorbate and Fe storage in the dams, and high Fe intake increased both the dams' and the pups' tissue Fe stores.

3. In the animals receiving high Fe intake, a co-existing high ascorbate intake by the dams reduced the growth rate of the offspring, but only during the early stages of development, not during the later stages of post-weaning growth. All the pups' tissue ascorbate levels fell after weaning, but those born of the dams receiving the high ascorbic acid diets did not fall to levels lower than those of the other pups.

4. Thus, although certain disadvantages to the offspring resulting from very-high ascorbic acid intake by pregnant guinea-pig dams were detected, these did not include permanently increased ascorbate requirements, and hence a progression to scurvy as the pups grew and matured.

Type
Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

Allcva, F. R., Alleva, J. J. & Balazs, T. (1976) Toxicology and Applied Pharmacology 35, 393395.CrossRefGoogle Scholar
Anon. (1987) Nutrition Reviews 45, 217218.Google Scholar
Baker, E. M., Hodges, R. E., Hood, J., Sauberlich, H. E., March, S. C. & Canham, J. E. (1971) American Journal of Clinical Nutrition 24, 444454.CrossRefGoogle Scholar
Basu, T. K. (1985) Canadian Journal of Physiology and Pharmacology 63, 427430.CrossRefGoogle Scholar
Cochrane, W. A. (1965) Canadian Medical Association Journal 83, 893899.Google Scholar
Cook, J. D. & Monson, E. R. (1977) American Journal of Clinical Nutrition 30, 235241.CrossRefGoogle Scholar
Drysdale, J. W. & Munro, H. N. (1965) Biochemical Journal 95, 851858.CrossRefGoogle Scholar
Ginter, E., Drobna, E. & Ramacsay, L. (1982) International Journal of Vitamin Nutrition Research 52, 307311.Google Scholar
Glover, J. M., Jones, P. R., Greenman, D. A., Hughes, R. E. & Jacobs, A. (1972) British Journal of Experimental Pathology 53, 295300.Google Scholar
Greenfield, H., Briggs, G. M., Watson, R. H. J. & Yudkin, J. (1969) Proceedings of the Nutrition Society 28, 43A.Google Scholar
Hallberg, L. (1981). In Vitamin C; Ascorbic Acid, pp. 4962. [Counsell, J.N. and Hornig, D., editors]. London: Applied Science Publishers.Google Scholar
Hornig, D. (1975) World Review of Nutrition and Dietetics 23, 225258.CrossRefGoogle Scholar
Hornig, D., Weiser, H., Weber, F. & Wiss, O. (1973) International Journal of Vitamin and Nutrition Research 43, 2838.Google Scholar
Keith, R. E., Libke, K. G. & Driskell, J. A. (1981) Nutrition Reports International 24, 811815.Google Scholar
Maturova, M., Cernoch, M., Walterova, D. & Santavy, F. (1978) Acta Biologica Medica Germanica 17, 15791588.Google Scholar
Milne, D. B. & Omaye, S. T. (1980) International Journal of Vitamin and Nutrition Research 50, 301308.Google Scholar
Nandi, B. K., Majumder, A. K. & Halder, K. (1977 a) International Journal of Vitamin and Nutrition Research 47, 200205.Google Scholar
Nandi, B. K., Majumder, A. K. & Halder, K. (1972 b) International Journal of Vitamin and Nutrition Research 47, 265267.Google Scholar
Nandi, B. K., Majumder, A. K., Subramanian, N. & Chatterjee, I. B. (1973) Journal of Nutrition 103, 16881695.CrossRefGoogle Scholar
Norkus, E. P. & Rosso, P. (1975) Annals of the New York Academy of Sciences 258, 401409.CrossRefGoogle Scholar
Norkus, E. P. & Rosso, P. (1981) Journal of Nutrition 111, 624630.CrossRefGoogle Scholar
Omaye, S. T., Skala, J. H. & Jacob, R. A. (1986) American Journal of Clinical Nutrition 44, 257264.CrossRefGoogle Scholar
Pye, O. F., Taylor, C. M. & Fontanares, P. E. (1961) Journal of Nutrition 73, 236242.CrossRefGoogle Scholar
Rivers, J. M. & Devine, M. M. (1975) Annals of the New York Academy of Sciences 258, 465482.CrossRefGoogle Scholar
Samborskaya, E. P. (1964) Bulletin of Experimental Biology and Medicine, USSR 57, 105108.Google Scholar
Schrauzer, G. N. & Rhead, W. J. (1973) International Journal of Vitamin and Nutrition Research 43, 201211.Google Scholar
Smith, C. H. & Bidlack, W. R. (1980 a) Journal of Nutrition 110, 13981408.CrossRefGoogle Scholar
Smith, C. H. & Bidlack, W. R. (1980 b) Biochemical Medicine 24, 4348.CrossRefGoogle Scholar
Sorensen, D. I., Devine, M. & Rivers, J. (1974) Journal of Nutrition 104, 10411048.CrossRefGoogle Scholar
Tolbert, B. M. (1985). International Journal of Vitamin and Nutritional Research 27, Suppl.121138.Google Scholar
Tsao, C. S. & Salimi, S. L. (1984) Medical Hypotheses 13, 303310.CrossRefGoogle Scholar