Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-wzh95 Total loading time: 0.24 Render date: 2022-01-21T10:03:24.919Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Effects of trenbolone acetate and zeranol on protein metabolism in male castrate andfemale lambs

Published online by Cambridge University Press:  09 March 2007

Patrick A. Sinnett-Smith
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr. Loughborough, Leics. LE12 5RD
Nicola W. Dumelow
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr. Loughborough, Leics. LE12 5RD
Peter J. Buttery
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr. Loughborough, Leics. LE12 5RD
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Tissue composition and skeletal muscle cathepsin D (EC 3.4.23.5) activity weremeasured in wether lambs treated with trenbolone acetate (TBA) and oestradiol-17β (Oe) in combination and female lambs treated with TBA or zeranol. Muscle and liver protein fractional synthesis rates and plasma leucine flux were measured in the female lambs.

2. Male castrate lambs treated with TBA plus Oe showed increased growth rate, improvedfood conversion efficiency, decreased muscle RNA concentration and decreased total cathepsin D activity in muscle.

3. Female lambs treated with TBA or zeranol showed increased weight gain, improved food conversion efficiency, decreased muscle RNA and DNA concentrations and decreased free cathepsin D activity in muscle. Mixed muscle protein fractional synthesis rate was decreasedafter TBA treatment. Plasma leucine flux, not corrected for oxidation or food intake, wasnot increased by TBA or zeranol treatment.

4. Treatment of female lambs with TBA or zeranol caused increased growth rate. This increased growth rate is probably due in part to decreased muscle protein degradation, since evidence was obtained that muscle protein synthesis is decreased by TBA and zeranol treatment.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Atkin, G. E. & Ferdinand, W. (1970). Analytical Biochemistry 38, 313329.CrossRefGoogle Scholar
Barrett, A. J. (1972). In Lysosomes: a Laboratory Handbook, pp. 42135 [Dingle, J. T., editor]. Amsterdam: North-Holland.Google Scholar
Borger, M. L., Wilson, L. L., Sink, J. D., Ziegler, J. H. & Davis, S. L. (1973). Journal of Animal Science 36, 706711.CrossRefGoogle Scholar
Breuer, C. B. & Florini, J. R. (1966). Biochemistry, New York 5, 38573865.CrossRefGoogle Scholar
Coelho, J. F. S., Galbraith, H. & Topps, J. H. (1981). Animal Production 32, 261266.CrossRefGoogle Scholar
Coward, B. J. & Buttery, P. J. (1982). Journal of Agricultural Science, Cambridge 98, 307316.CrossRefGoogle Scholar
Dahlberg, E. (1982). Biochimica et Biophysica Acta 717, 6575.CrossRefGoogle Scholar
Donaldson, I. A., Hart, I. C. & Heitzman, R. J. (1981). Research in Veterinary Science 30, 713.Google Scholar
Dubé, J. Y., Lesage, R. & Tremblay, R. R. (1976). Canadian Journal of Biochemistry 54, 5055.CrossRefGoogle Scholar
Dumelow, N. W., Pearson, J. T., Essex, C. P. & Buttery, P. J. (1982). Proceedings of the Nutrition Society 41, 57A.Google Scholar
Faure, A. & Sutter-Dub, M.-Th. (1979). Journal of Physiology, Paris 75, 289295.Google Scholar
Garlick, P. J., Millward, D. J., James, W. P. T. & Waterlow, J. G. (1973). Biochemical Journal 136, 935945.CrossRefGoogle Scholar
Goldberg, A. L. & Dice, J. F. (1974). Annual Reviews in Biochemistry 43, 835869.CrossRefGoogle Scholar
Goldberg, A. L., Howell, E. M., Li, J. B., Martel, S. B. & Prouty, W. F. (1974). Federation Proceedings 33, 11121120.Google Scholar
Harris, C. I. & Milne, G. (1980). British Journal of Nutrition 44, 129140.CrossRefGoogle Scholar
Heitzman, R. J. (1980). In Protein Deposition in Animals, pp. 193203 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar
Hoffman, B. (1980). In Protein Deposition in Animals, pp. 205214 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar
Jefferson, L. S., Li, J. B. & Rannels, M. B. (1977). Journal of Biological Chemistry 252, 14761483.Google Scholar
Kerr, S. E. & Seraidorian, K. (1945). Journal of Biological Chemistry 159, 211225.Google Scholar
Lobley, J., Smith, S., Mollison, G., Connell, A. & Galbraith, H. (1982). Proceedings of the Nutrition Society 41, 28A.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. C. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.Google Scholar
Lunn, P. G., Whitehead, R. G. & Baker, B. A. (1976). British Journal of Nutrition 36, 219230.CrossRefGoogle Scholar
Maund, B. A. (1976). Animal Production 22, 149.Google Scholar
Millward, D. J., Garlick, P. J., James, W. P. T., Nnanyelugo, D. O. & Ryatt, S. S. (1973). Nature 241, 204205.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochemical Journal 156, 185188.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. (1975). Biochemical Journal 150, 235243.CrossRefGoogle Scholar
Moffit, P. E., Wilson, G. R. & Preston, R. L. (1975). Proceedings of the Society for Experimental Biology and Medicine 148, 650652.CrossRefGoogle Scholar
Munro, H. N. & Fleck, A. (1969). In Mammalian Protein Metabolism, vol. 3, pp. 424525 [Munro, H. N., editor]. New York: Academic Press.Google Scholar
Peck, D. N. & Chesworth, J. M. (1977). Hormone and Metabolic Research 9, 531532.CrossRefGoogle Scholar
Pottier, J., Cousty, C., Heitzman, R. J. & Reynold, I. P. (1981). Xenobiotica 11, 489500.CrossRefGoogle Scholar
Rannels, S. R. & Jefferson, L. S. (1980). American Journal of Physiology 238, E564E572.Google Scholar
Raymond, J. P., Ojasoo, T. & Labrie, F. (1981). In Mechanisms of Steroid Action, pp. 145157 [Lewis, G. P. and Ginsburg, M., editors]. London: Macmillan.Google Scholar
Schimke, R. T. (1970). In Mammalian Protein Metabolism, vol. 4, pp. 177228 [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle Scholar
Snochowski, M., Dahlberg, E. & Gustafsson, J. A. (1980). European Journal of Biochemistry 111, 603616.CrossRefGoogle Scholar
Snochowski, M., Lundstrom, K., Dahlberg, E., Petersson, H. & Edquist, L. E. (1981 a). Journal of Animal Science 53, 8090.CrossRefGoogle Scholar
Snochowski, M., Saartok, T., Dahlberg, E., Eriksson, E. & Gustafsson, J. A. (1981 b). Journal of Steroid Biochemistry 14, 765771.CrossRefGoogle Scholar
Tao, R. C., Asplund, J. M. & Kappel, L. C. (1974). Journal of Nutrition 104, 16461656.CrossRefGoogle Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1972). Manometric and Biochemical Techniques, 5th ed. Minneapolis: Burgess Publishing Co.Google Scholar
Vernon, B. G. & Buttery, P. J. (1976). British Journal of Nutrition 36, 575579.CrossRefGoogle Scholar
Vernon, B. G. & Buttery, P. J. (1978 a). British Journal of Nutrition 40, 563572.CrossRefGoogle Scholar
Vernon, B. G. & Buttery, P. J. (1978 b). Animal Production 26, 19.CrossRefGoogle Scholar
Vernon, B. G. & Buttery, P. J. (1981). Proceedings of the Nutrition Society 40, 13A.Google Scholar
Waterlow, J. L., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland.Google Scholar
Young, V. R. (1980). In Protein Deposition in Animals, pp. 167191 [Buttery, P. J. and Lindsay, D. B. editors]. London: Butterworths.CrossRefGoogle Scholar
You have Access
55
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of trenbolone acetate and zeranol on protein metabolism in male castrate andfemale lambs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of trenbolone acetate and zeranol on protein metabolism in male castrate andfemale lambs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of trenbolone acetate and zeranol on protein metabolism in male castrate andfemale lambs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *