Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-08T16:08:23.031Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Effect of zinc supplementation on in vitro copper-induced oxidation of low-density lipoproteins in healthy French subjects aged 55–70 years:the Zenith Study

Published online by Cambridge University Press:  08 March 2007

Christine Feillet-Coudray*
Affiliation:
Centre de Recherche en Nutrition Humaine d'auvergneUnit´ Maladies Metaboliques et MicronutrimentsINRA Clermont/TheixFrance
Nathalie Meunier
Affiliation:
Centre de Recherche en Nutrition Humaine d'auvergneUnit´ Maladies Metaboliques et MicronutrimentsINRA Clermont/TheixFrance
Dominique Bayle
Affiliation:
Centre de Recherche en Nutrition Humaine d'auvergneUnit´ Maladies Metaboliques et MicronutrimentsINRA Clermont/TheixFrance
Marion Brandolini-Bunlon
Affiliation:
Laboratoire de Nutrition Humaine58 Rue Montalembert63000 Clermont-FerrandFrance
Maud Andriollo-Sanchez
Affiliation:
Laboratoire de NutritionVieillissement et Maladies CardiovasculairesFaculté de Pharmacie Domaine de la Merci38700 La TroncheFrance
Jacqueline M. O'Connor
Affiliation:
Northern Ireland Centre for Food and Health (NICHE)University of UlsterColeraine BT52 1SAUK
Giuseppe Maiani
Affiliation:
National Institute for Food and Nutrition ResearchHuman Nutrition UnitVia Ardeatina 54600178 RomaItaly
Anne-Marie Roussel
Affiliation:
Laboratoire de NutritionVieillissement et Maladies CardiovasculairesFaculté de Pharmacie Domaine de la Merci38700 La TroncheFrance
Andrzej Mazur
Affiliation:
Centre de Recherche en Nutrition Humaine d'auvergneUnit´ Maladies Metaboliques et MicronutrimentsINRA Clermont/TheixFrance
Charles Coudray
Affiliation:
Centre de Recherche en Nutrition Humaine d'auvergneUnit´ Maladies Metaboliques et MicronutrimentsINRA Clermont/TheixFrance
*
*Corresponding author: Dr Christine Feillet-Coudray, fax +33 4 73 62 46 38, email cfeillet@ensam.inra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Zn has been shown to possess antioxidant properties in vitro and in vitro. As inadequate dietary Zn intake has been reported in these populations, Zn supplementation may protect against oxidative stress and thereby limit the progression of degenerative diseases in such populations. We conducted the present study to evaluate the long-term supplementation effects of two moderate doses of Zn on in vitro Cu-induced LDL oxidation in French men and women.Three groups of sixteen healthy subjects aged 55–70 years from each sex participated in this randomized double-blind, placebo-controlled study. Each group received for six months either 0, 15 or 30mg supplemental Zn per d. At the beginning and at the end of the supplementation periods, dietary intakes of Zn, Cu, Fe and vitamin E were estimated using 4d food-intake records (including the weekend) and the GENI program. Zn, Cu, Fe and vitamin E statuswere also determined. In vitro LDL oxidizability (basal conjugated diene level, maximal conjugated diene formation and lag time) and lipid parameters were also determined. Dietary intakes of Zn, Cu, Fe and vitamin E were adequate in this population. Zn supplementation significantly increased serum Zn levels but did not significantly modify Cu, Fe or vitamin E status. However, Zn supplementation had no effect on in vitro LDL oxidation parameters, nor were there any sex-related differences in in vitro LDL oxidizability. The present study showed that long-term Zn supplementation of healthy subjects aged 55–70 years had no effect on in vitro Cu-induced LDL oxidation under the study conditions.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Anderson, RA, Roussel, AM, Zouari, N, Mahjoub, S, Matheau, JM & Kerkeni, APotential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr 2001 20 212218Google Scholar
Andriollo-Sanchez, M, Hininger-Favier, I, Meunier, Net al.. Zinc intake and status in middle-aged and older European subjects:the ZENITH study. Eur J Clin Nutr 2005 59 S37S41Google Scholar
Arnaud, JZinc. In Apports nutritionnels conseillés pour la population fran¸aise, [Martin, A] Paris: TecDoc 2001 155158Google Scholar
Arnaud, J, Bellanger, J, Bienvenu, F, Chappuis, P & Favier, ARecommended method for assaying serum zinc with flame atomic absorption. Ann Biol Clin (Paris) 1986 44 7787Google Scholar
Azaïs-Braesco, V, Bruckert, E, Durier, P, Lecerf, JM, Pascal, G, Hercberg, S, Bourgeois, C & Leger, CVitamin E. In Apports nutritionnels conseillés pour la population fran¸aise, [Martin, A] Paris: TecDoc 2001 236243.Google Scholar
Balaban, RS, Nemoto, S & Finkel, TMitochondria, oxidants, and aging. Cell 2005 120 483495Google Scholar
Beattie, JH & Kwun, ISIs zinc deficiency a risk factor for atherosclerosis?. Br J Nutr 2004 91 177181Google Scholar
Black, MR, Medeiros, DM, Brunett, E & Welke, RZinc supplements and serum lipids in young adult white males. Am J Clin Nutr 1988 47 970975Google Scholar
Blostein-Fujii, A, DiSilvestro, RA, Frid, D, Katz, C & Malarkey, WShort-term zinc supplementation in women with non-insulin-dependent diabetes mellitus: effects on plasma 5′-nucleotidase activities, insulin-like growth factor I concentrations, and lipoprotein oxidation rates in vitro. Am J Clin Nutr 1997 66 639642Google Scholar
Bonham, M, O'Connor, JM, Alexander, HD, Coulter, J, Walsh, PM, McAnena, LB, Downes, CS, Hannigan, BM & Strain, JJZinc supplementation has no effect on circulating levels of peripheral blood leucocytes and lymphocyte subsets in healthy adult men. Br J Nutr 2003 89 695703Google Scholar
Bray, TM & Bettger, WJThe physiological role of zinc as an antioxidant. Free Radic Biol Med 1990 8 281291Google Scholar
Briefel, RR, Bialostosky, K, Kennedy-Stephenson, J, McDowell, MA, Ervin, RB & Wright, JDZinc intake of the U.S. population:findings from the third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 2000 130 1367S1373SGoogle Scholar
Chandra, RKExcessive intake of zinc impairs immune responses. JAMA 1984 252 14431446Google Scholar
Chisolm, GM 3rd, Hazen, SL, Fox, PL & Cathcart, MKThe oxidation of lipoproteins by monocytes–macrophages. Biochemical and biological mechanisms. J Biol Chem 1999 274 2595925962Google Scholar
Coudray, CCuivre. In Apports nutritionnels conseillés pour la population française, [Martin, A] Paris: TecDoc, 2001 158161Google Scholar
Coudray, C & Hercberg, CCuivre. In Apports nutritionnels conseillés pour la population française, [Martin, A] Paris: TecDoc, 2001 150155Google Scholar
Coudray, C, Rachidi, S & Favier, AEffect of zinc on superoxide-dependent hydroxyl radical production in vitro. Biol Trace Elem Res 1993 38 273287Google Scholar
DiSilvestro, RAZinc in relation to diabetes and oxidative disease. J Nutr 2000 130 1509S1511SGoogle Scholar
Favier, JC, Ireland-Ripert, J, Toque, C & Feinberg, MRépertoire général des aliments, 2nd ed. ParisLavoisier Tec & Doc 1995Google Scholar
Feillet, C, Roche, B, Tauveron, I, Bayle, D, Rock, E, Borel, P, Rayssiguier, Y, Thieblot, P & Mazur, ASusceptibility to oxidation and physicochemical properties of LDL in insulin-dependent diabetics. Atherosclerosis 1998 136 405407Google Scholar
Freeland-Graves, JH, Friedman, BJ, Han, WH, Shorey, RL & Young, REffect of zinc supplementation on plasma high-density lipoprotein cholesterol and zinc. Am J Clin Nutr 1982 35 988992Google Scholar
Galan, P, Viteri, FE, Bertrais, Set al. Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur J Clin Nutr 2005 59 11811190Google Scholar
Gatto, LM & Samman, SThe effect of zinc supplementation on plasma lipids and low-density lipoprotein oxidation in males. Free Radic Biol Med 1995 19 517521Google Scholar
Gibson, RSPrinciples of Nutritional Assessment. New York: Oxford 1990Google Scholar
Grinshtein, N, Bamm, VV, Tsemakhovich, VA & Shaklai, NMechanism of low-density lipoprotein oxidation by hemoglobinderived iron. Biochemistry 2003 42 69776985Google Scholar
Harman, DRole of free radicals in aging and disease. Ann N Y Acad Sci 1992 673 126141Google Scholar
Hennig, B, Toborek, M & McClain, CJAntiatherogenic properties of zinc: implications in endothelial cell metabolism. Nutrition 1996 12 711717Google Scholar
Hercberg, S, Galan, P, Preziosi, P, Roussel, AM, Arnaud, J, Richard, MJ, Malvy, D, Paul-Dauphin, A, Briancon, S & Favier, ABackground and rationale behind the SU.VI.MAX Study, a prevention trial using nutritional doses of a combination of antioxidant vitamins and minerals to reduce cardiovascular diseases and cancers. Supplementation en VItamins et Mineraux AntioXydants Study. Int J Vitam Nutr Res 1998 68 320Google Scholar
Hill, T, Meunier, N, Andriollo-Sanchez, M, Ciarapica, D, Hininger-Favier, I, Polita, A,O'Connor, JM, Coudray, C & Cashman, KDThe relationship between the zinc nutritive status and biochemical markers of bone turnover in older European adults: the ZENITH study. Eur J Clin Nutr 2005 59 S73S77Google Scholar
Hininger, IA, Meyer-Wenger, A, Moser, Uet al.. No significant effects of lutein, lycopene or beta-carotene supplementation on biological markers of oxidative stress and LDL oxidizability in healthy adult subjects. J Am Coll Nutr 2001 20 232238Google Scholar
Hooper, PL, Visconti, L, Garry, PJ & Johnson, GEZinc lowers high-density lipoprotein-cholesterol levels. JAMA 1980 244 19601961Google Scholar
Jones, DP, Mody, VC Jr, Carlson, JL, Lynn, MJ & Sternberg, PRedox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 2002 33 12901300Google Scholar
Khalil, A, Wagner, JR, Lacombe, G, Dangoisse, V & Fulop, TIncreased susceptibility of low-density lipoprotein (LDL) to oxidation by gamma-radiolysis with age. FEBS Lett 1996 392 4548Google Scholar
Klouche, K, Morena, M, Canaud, B, Descomps, B, Beraud, JJ & Cristol, JPMechanism of in vitro heme-induced LDL oxidation:effects of antioxidants. Eur J Clin Invest 2004 34 619625Google Scholar
Le Moullec, N, Deheeger, M, Preziosi, Pet al.. Validation du manuel-photos utilis dans l'enquête alimentaire SU.VI.MAX. Cah Nutr Diet 1996 31 158164Google Scholar
McClain, C, Morris, P & Hennig, BZinc and endothelial function. Nutrition 1995 11 117120Google Scholar
Maggio, D, Barabani, M, Pierandrei, M, Polidori, MC, Catani, M, Mecocci, P, Senin, U, Pacifici, R & Cherubini, AMarked decrease in plasma antioxidants in aged osteoporotic women:results of a cross-sectional study. J Clin Endocrinol Metab 2003 88 15231527Google Scholar
Maiani, G, Mobarhan, S, Ceccanti, M, Ranaldi, L, Gettner, S, Bowen, P, Friedman, H, De Lorenzo, A & Ferro-Luzzi, ABeta-carotene serum response in young and elderly females. Eur J Clin Nutr 1989 43 749761Google Scholar
Napoli, C, Abete, P, Corso, G, Malorni, A, Postiglione, A, Ambrosio, G, Cacciatore, F, Rengo, F & Palumbo, GIncreased low-density lipoprotein peroxidation in elderly men. Coron Artery Dis 1997 8 129136Google Scholar
Powell, SRThe antioxidant properties of zinc. J Nutr 2000 130 1447S1454SGoogle Scholar
Rayssiguier, Y, Gueux, E, Bussiere, L & Mazur, ACopper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J Nutr 1993 123 13431348Google Scholar
Reaven, PD, Napoli, C, Merat, S & Witztumc, JLLipoprotein modification and atherosclerosis in aging. Exp Gerontol 1999 34 527537Google Scholar
Roussel, AM, Kerkeni, A, Zouari, N, Mahjoub, S, Matheau, JM & Anderson, RAAntioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr 2003 22 316321Google Scholar
Schlegel-Zawadzka, M, Przysawski, J & Walkowiak, JZinc supplementation altered phospholipids’ fatty acids pattern in young healthy women. Asia Pac J Clin Nutr 2004 13 S156Google Scholar
Turley, E, McKeown, A, Bonham, MPet al. Copper supplementation in humans does not affect the susceptibility of low density lipoprotein to in vitro induced oxidation (FOODCUE project). Free Radic Biol Med 2000 29 11291134Google Scholar
Vaquero, MPMagnesium and trace elements in the elderly:intake, status and recommendations. J Nutr Health Aging 2002 6 147153Google Scholar
Wilkins, GM & Leake, DSThe effects of free radical scavengers on the oxidation of low-density lipoproteins by macrophages. Biochim Biophys Acta 1994 1215 250258Google Scholar