Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-dnb4q Total loading time: 0.441 Render date: 2022-07-03T06:44:02.969Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Non-alcoholic beverages intake and risk of CVD among Japanese men and women: the Japan Public Health Center study

Published online by Cambridge University Press:  21 July 2021

Renzhe Cui
Affiliation:
Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
Hiroyasu Iso*
Affiliation:
Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
Ehab Salah Eshak
Affiliation:
Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan Department of Public Health and Preventive Medicine, Faculty of Medicine, Minia University, Minia, Egypt
Koutatsu Maruyama
Affiliation:
Laboratory of Community Health and Nutrition, Special Course of Food and Health Science, Department of Bioscience, Graduate School of Agriculture, Ehime University, Ehime, Japan
Junko Ishihara
Affiliation:
Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
Ribeka Takachi
Affiliation:
Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara, Japan
Norie Sawada
Affiliation:
Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
Shoichiro Tsugane
Affiliation:
Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
*
*Corresponding author: Hiroyasu Iso, email iso@pbhel.med.osaka-u.ac.jp

Abstract

The association between the intake of non-alcoholic beverages and CVD in Asians is uncertain. The intake of non-alcoholic beverages was estimated in 77 407 participants of the Japan Public Health Centre-based cohort study aged 45–74 years. The Cox regression calculated the hazard ratios (HR) and 95 % CI for incident CVD according to sex-specific quintiles of intake of non-alcoholic beverages. A total of 4578 incident CVD (3751 strokes and 827 CHD) were diagnosed during a 13·6-year median follow-up. The risks of stroke and total CVD were lower for the highest v. lowest intake quintiles of non-alcoholic beverages in men and women: the multivariable HRs (95 % CIs) were 0·82 (0·71, 0·93, Ptrend = 0·005) and 0·86 (0·76, 0·97, Ptrend = 0·02), respectively, in men and were 0·73 (0·63, 0·86, Ptrend = 0·003) and 0·75 (0·65, 0·87, Ptrend = 0·005), respectively, in women. The reduced risk was evident for both ischaemic and haemorrhagic strokes and was mainly attributable to green tea consumption. The intake of non-alcoholic beverages from coffee and other beverages was not associated with the risk of CVD in both men and women. Also, there was no association between the intake of non-alcoholic beverages and the risk of CHD in either sex. In conclusion, the risks of stroke and total CVD were lower with a higher intake of non-alcoholic beverages in Japanese men and women.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nicolaidis, S (1998) Physiology of thirst. In Hydration Throughout Life, pp. 247 [Arnaud, MJ, editor]. Montrouge: John Libbey Eurotext.Google Scholar
Park, YS, Jang, MJ, Lim, HJ, et al. (2004) New paradigm for Dietary Reference Intakes (DRIs) sodium, chlorine, potassium, sulfur and water. Korean J Food Nutr 9, 844e8.Google Scholar
Westerterp, KR, Plasqui, G & Goris, AHC (2005) Water loss as a function of energy intake, physical activity and season. Br J Nutr 93, 199e203.CrossRefGoogle Scholar
Ministry of the Environment Government of Japan (2014) Hyperthermia Manual. 25–47. https://www.wbgt.env.go.jp/pdf/kogi01.pdf (accessed May 2020).Google Scholar
World Health Organization (WHO) (2003) Domestic Water Quantity, Service Level and Health. Geneva: WHO.Google Scholar
Chan, J, Knutsen, SF, Blix, GG, et al. (2002) Water, other fluids, and fatal coronary heart disease: the Adventist Health Study. Am J Epidemiol 155, 827833.CrossRefGoogle ScholarPubMed
Sontrop, JM, Dixon, SN, Garg, AX, et al. (2013) Association between water intake, chronic kidney disease, and cardiovascular disease: a cross-sectional analysis of NHANES data. Am J Nephrol 37, 434442.CrossRefGoogle ScholarPubMed
Wu, LW, Chen, WL, Liaw, FY, et al. (2016) Association between fluid intake and kidney function, and survival outcomes analysis: a nationwide population-based study. BMJ Open 6, e010708.CrossRefGoogle ScholarPubMed
Callegaro, CC, Moraes, RS, Negrao, CE, et al. (2007) Acute water ingestion increases arterial blood pressure in hypertensive and normotensive subjects. J Hum Hypertens 21, 564570.CrossRefGoogle ScholarPubMed
Schroeder, C, Bush, VE, Norcliffe, LJ, et al. (2002) Water drinking acutely improves orthostatic tolerance in healthy subjects. Circulation 106, 28062811.CrossRefGoogle ScholarPubMed
Leurs, LJ, Schouten, LJ, Goldbohm, RA, et al. (2010) Total fluid and specific beverage intake and mortality due to IHD and stroke in the Netherlands Cohort Study. Br J Nutr 104, 12121221.10.1017/S0007114510001923CrossRefGoogle ScholarPubMed
Cui, R, Iso, H, Eshak, ES, et al. (2018) Water intake from foods and beverages and risk of mortality from CVD: the Japan Collaborative Cohort (JACC) Study. Public Health Nutr 21, 30113017.CrossRefGoogle ScholarPubMed
Palmer, SC, Wong, G, Iff, S, et al. (2014) Fluid intake and all-cause mortality, cardiovascular mortality and kidney function: a population-based longitudinal cohort study. Nephrol Dial Transplant 29, 13771384.CrossRefGoogle ScholarPubMed
Mostofsky, E, Chahal, HS, Mukamal, KJ, et al. (2016) Alcohol and immediate risk of cardiovascular events: a systematic review and dose-response meta-analysis. Circulation 133, 979987.10.1161/CIRCULATIONAHA.115.019743CrossRefGoogle ScholarPubMed
Tsugane, S & Sawada, N (2014) The JPHC study: design and some findings on the typical Japanese diet. Jpn J Clin Oncol 44, 777782.CrossRefGoogle ScholarPubMed
Sasaki, S, Kobayashi, M, Ishihara, J, et al. (2003) Self-administered food frequency questionnaire used in the 5-year follow-up survey of the JPHC Study: questionnaire structure, computation algorithms, and area-based mean intake. J Epidemiol 13, S13S22.CrossRefGoogle ScholarPubMed
Hamazaki, K, Eshak, ES, Ikehara, S, et al. (2018) Plasma levels of n-3 fatty acids and risk of coronary heart disease among Japanese. The Japan Public Health Center-Based (JPHC) study. Atherosclerosis 272, 226232.CrossRefGoogle ScholarPubMed
Sasaki, S, Kobayashi, M & Tsugane, S (2003) Validity of a self-administered food frequency questionnaire used in the 5-year follow-up survey of the JPHC study cohort I: comparison with dietary records for food groups. J Epidemiol 13, S5763.CrossRefGoogle ScholarPubMed
Ishihara, J, Sobue, T, Yamamoto, S, et al. (2003) Validity and reproducibility of a self-administered food frequency questionnaire in the JPHC Study Cohort II: study design, participant profile and results in comparison with Cohort I. J Epidemiol 13, S134S147.CrossRefGoogle ScholarPubMed
Iso, H, Rexrode, K & Hennekens, CH (2000) Application of computer tomographyoriented criteria for stroke subtype classification in a prospective study. Ann. Epidemiol 10, 8187.10.1016/S1047-2797(99)00040-XCrossRefGoogle ScholarPubMed
Walker, AE, Robins, M & Weinfeld, FD (1981) The National Survey of Stroke. Clinical findings. Stroke 12, I1344.Google ScholarPubMed
Tunstall-Pedoe, H, Kuulasmaa, K, Amouyel, P, et al. (1994) Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and casefatality rates in 38 populations from 21 countries in four continents. Circulation 90, 583612.CrossRefGoogle Scholar
Pang, J, Zhang, Z, Zheng, TZ, et al. (2016) Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis. Int J Cardiol 202, 967974.CrossRefGoogle ScholarPubMed
Ding, M, Bhupathiraju, SN, Satija, A, et al. (2014) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129, 643659.CrossRefGoogle Scholar
Yin, J, Zhu, Y, Malik, V, et al. (2020) Intake of sugar-sweetened and low-calorie sweetened beverages and risk of cardiovascular disease: a meta-analysis and systematic review. Adv Nutr 12, 89101.CrossRefGoogle Scholar
Eshak, ES, Iso, H, Kokubo, Y, et al. (2012) Soft drink intake in relation to incident ischemic heart disease, stroke, and stroke subtypes in Japanese men and women: the Japan Public Health Centre-based study cohort I. Am J Clin Nutr 96, 13901397.CrossRefGoogle ScholarPubMed
Scheffers, FR, Boer, JMA, Verschuren, WMM, et al. (2019) Pure fruit juice and fruit consumption and the risk of CVD: the European prospective investigation into cancer and nutrition-Netherlands (EPiC-NL) study. Br J Nutr 121, 351359.CrossRefGoogle ScholarPubMed
Beijering, RJ, Gips, CH, Huizenga, JR, et al. (1997) Whole blood and plasma water in health and disease: longitudinal and transverse observations and correlations with several different hematological and clinicochemical parameters. Clin Chim Acta 258, 5968.CrossRefGoogle ScholarPubMed
Koenig, W, Sund, M, Filipiak, B, et al. (1998) Plasma viscosity and the risk of coronary heart disease: results from the MONICA-Augsburg Cohort Study, 1984 to 1992. Arterioscler Thromb Vasc Biol 18, 768772.10.1161/01.ATV.18.5.768CrossRefGoogle ScholarPubMed
Kant, AK, Graubard, BI & Atchison, EA (2009) Intakes of plain water, moisture in foods and beverages, and total water in the adult US population-nutritional, meal pattern, and body weight correlates: national Health and Nutrition Examination Surveys 1999–2006. Am J Clin Nutr 90, 655663.CrossRefGoogle ScholarPubMed
Iso, H, Date, C, Wakai, K, Fukui, M, et al. (2006) The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 144, 554562.CrossRefGoogle ScholarPubMed
Kato, M, Noda, M, Inoue, M, et al. (2009) Psychological factors, coffee and risk of diabetes mellitus among middle-aged Japanese: a population-based prospective study in the JPHC study cohort. Endocr J 56, 459468.CrossRefGoogle ScholarPubMed
Saito, E, Inoue, M, Sawada, N, et al. (2015) Association of green tea consumption with mortality due to all causes and major causes of death in a Japanese population: the Japan Public Health Center-based Prospective Study (JPHC Study). Ann Epidemiol 25, 512518.CrossRefGoogle Scholar
Velayutham, P, Babu, A & Liu, D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15, 18401850.Google Scholar
Hu, GL, Wang, X, Zhang, L, et al. (2019) The sources and mechanisms of bioactive ingredients in coffee. Food Funct 10, 31133126.CrossRefGoogle ScholarPubMed
Popkin, BM, D’Anci, KE & Rosenberg, IH (2010) Water, hydration, and health. Nutr Rev 68, 439458.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Non-alcoholic beverages intake and risk of CVD among Japanese men and women: the Japan Public Health Center study
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Non-alcoholic beverages intake and risk of CVD among Japanese men and women: the Japan Public Health Center study
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Non-alcoholic beverages intake and risk of CVD among Japanese men and women: the Japan Public Health Center study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *