Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-13T22:43:59.617Z Has data issue: false hasContentIssue false

Longitudinal association between soft drink consumption and handgrip strength in adults: a prospective analysis from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study

Published online by Cambridge University Press:  11 April 2024

Tongfeng Liu
Affiliation:
Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
Shengxin Quan
Affiliation:
Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
Ge Meng*
Affiliation:
Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
Hongmei Wu
Affiliation:
Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
Yeqing Gu
Affiliation:
Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China
Shunming Zhang
Affiliation:
Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
Xuena Wang
Affiliation:
Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
Juanjuan Zhang
Affiliation:
Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
Qing Zhang
Affiliation:
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
Li Liu
Affiliation:
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
Shaomei Sun
Affiliation:
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
Xing Wang
Affiliation:
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
Ming Zhou
Affiliation:
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
Qiyu Jia
Affiliation:
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
Kun Song
Affiliation:
Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
Zhongze Fang*
Affiliation:
Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
Kaijun Niu*
Affiliation:
Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People’s Republic of China Health Management Centre, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, People’s Republic of China Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, People’s Republic of China National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, People’s Republic of China
*
*Corresponding authors: Ge Meng, email mengge@tmu.edu.cn; Zhongze Fang, email fangzhongze@tmu.edu.cn; Kaijun Niu, email nkj0809@gmail.com
*Corresponding authors: Ge Meng, email mengge@tmu.edu.cn; Zhongze Fang, email fangzhongze@tmu.edu.cn; Kaijun Niu, email nkj0809@gmail.com
*Corresponding authors: Ge Meng, email mengge@tmu.edu.cn; Zhongze Fang, email fangzhongze@tmu.edu.cn; Kaijun Niu, email nkj0809@gmail.com

Abstract

Soft drink consumption has become a highly controversial public health issue. Given the pattern of consumption in China, sugar-sweetened beverage is the main type of soft drink consumed. Due to containing high levels of fructose, a soft drink may have a deleterious effect on handgrip strength (HGS) due to oxidative stress, inflammation and insulin resistance. However, few studies show an association between soft drink consumption and HGS in adults. We aimed to investigate the association between soft drink consumption and longitudinal changes in HGS among a Chinese adult population. A longitudinal population-based cohort study (5-year follow-up, median: 3·66 years) was conducted in Tianjin, China. A total of 11 125 participants (56·7 % men) were enrolled. HGS was measured using a handheld digital dynamometer. Soft drink consumption (mainly sugar-containing carbonated beverages) was measured at baseline using a validated FFQ. ANCOVA was used to evaluate the association between soft drink consumption and annual change in HGS or weight-adjusted HGS. After adjusting for multiple confounding factors, the least square means (95 % CI) of annual change in HGS across soft drink consumption frequencies were −0·70 (–2·49, 1·09) for rarely drinks, −0·82 (–2·62, 0·97) for < 1 cup/week and −0·86 (–2·66, 0·93) for ≥ 1 cup/week (Pfor trend < 0·05). Likewise, a similar association was observed between soft drink consumption and annual change in weight-adjusted HGS. The results indicate that higher soft drink consumption was associated with faster HGS decline in Chinese adults.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auyeung, TW, Lee, SW, Leung, J, et al. (2014) Age-associated decline of muscle mass, grip strength and gait speed: a 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr Gerontol Int 14, 7684.CrossRefGoogle ScholarPubMed
Bohannon, RW (2019) Grip strength: an indispensable biomarker for older adults. Clin Interv Aging 14, 16811691.CrossRefGoogle ScholarPubMed
Norman, K, Stobäus, N, Gonzalez, MC, et al. (2011) Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr (Edinburgh, Scotland) 30, 135142.CrossRefGoogle ScholarPubMed
Vartanian, LR, Schwartz, MB & Brownell, KD (2007) Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health 97, 667675.CrossRefGoogle ScholarPubMed
Ibrahim, NK & Iftikhar, R (2014) Energy drinks: getting wings but at what health cost? Pak J Med Sci 30, 14151419.Google ScholarPubMed
Tahmassebi, JF & BaniHani, A (2020) Impact of soft drinks to health and economy: a critical review. Eur Arch Paediatr Dent: Offic J Eur Acad Paediatr Dent 21, 109117.CrossRefGoogle ScholarPubMed
Kleiman, S, Ng, SW & Popkin, B (2012) Drinking to our health: can beverage companies cut calories while maintaining profits? Obes Rev: Offic J Int Assoc Study Obes 13, 258274.CrossRefGoogle ScholarPubMed
Gong, W, Zhang, Y, Yao, Y, et al. (2018) Beverage consumption among Chinese adults in 2010–2012. Wei sheng yan jiu = J Hygiene Res 47, 367372.Google ScholarPubMed
Wang, Y, Jia, X, Du, W, et al. (2018) Intake of liquid beverage among Chinese adults aged 18–59 years old in 15 provinces, 2015. Wei sheng yan jiu = J Hygiene Res 47, 178182.Google ScholarPubMed
Lin, L, Li, C, Jin, C, et al. (2018) Sugar and energy content of carbonated sugar-sweetened beverages in Haidian District, Beijing: a cross-sectional study. BMJ Open 8, e022048.CrossRefGoogle ScholarPubMed
White, JS, Hobbs, LJ & Fernandez, S (2015) Fructose content and composition of commercial HFCS-sweetened carbonated beverages. Int J Obes (2005) 39, 176182.CrossRefGoogle ScholarPubMed
Porto, ML, Lírio, LM, Dias, AT, et al. (2015) Increased oxidative stress and apoptosis in peripheral blood mononuclear cells of fructose-fed rats. Toxicol Vitro: Int J Published Assoc BIBRA 29, 19771981.CrossRefGoogle ScholarPubMed
Softic, S, Stanhope, KL, Boucher, J, et al. (2020) Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sc 57, 308322.CrossRefGoogle ScholarPubMed
Bowen, TS, Schuler, G & Adams, V (2015) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia, Sarcopenia Muscle 6, 197207.CrossRefGoogle ScholarPubMed
Cleasby, ME, Jamieson, PM & Atherton, PJ (2016) Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol 229, R6781.CrossRefGoogle ScholarPubMed
Wu, H, Li, X, Zhang, Q, et al. (2020) Association between soft drink consumption and handgrip strength in middle aged and older adults: the TCLSIH cohort study. Int J Food Sci Nutr 71, 856862.CrossRefGoogle ScholarPubMed
Dong, R, Wang, X, Guo, Q, et al. (2016) Clinical relevance of different handgrip strength indexes and mobility limitation in the elderly adults. J Gerontol Ser A, Biol Sci Med Sci 71, 96102.CrossRefGoogle ScholarPubMed
Zhang, S, Gu, Y, Rayamajhi, S, et al. (2022) Ultra-processed food intake is associated with grip strength decline in middle-aged and older adults: a prospective analysis of the TCLSIH study. Eur J Nutr 61, 13311341.CrossRefGoogle ScholarPubMed
Gu, Y, Meng, G, Wu, H, et al. (2019) Thyroid function as a predictor of handgrip strength among middle-aged and older Euthyroid adults: the TCLSIH Cohort Study. J Am Med Dir Assoc 20, 12361241.CrossRefGoogle ScholarPubMed
Chen, LK, Liu, LK, Woo, J, et al. (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15, 95101.CrossRefGoogle ScholarPubMed
Mullee, A, Romaguera, D, Pearson-Stuttard, J, et al. (2019) Association between soft drink consumption and mortality in 10 European countries. JAMA Intern Med 179, 14791490.CrossRefGoogle ScholarPubMed
Zhang, S, Gu, Y, Bian, S, et al. (2021) Soft drink consumption and risk of nonalcoholic fatty liver disease: results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study. Am J Clin Nutr 113, 12651274.CrossRefGoogle ScholarPubMed
Alberti, KG & Zimmet, PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med: J Br Diabetic Assoc 15, 539553.3.0.CO;2-S>CrossRefGoogle Scholar
Chobanian, AV, Bakris, GL, Black, HR, et al. (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289, 25602572.CrossRefGoogle ScholarPubMed
Oksuzyan, A, Maier, H, McGue, M, et al. (2010) Sex differences in the level and rate of change of physical function and grip strength in the Danish 1905-cohort study. J Aging Health 22, 589610.CrossRefGoogle ScholarPubMed
Riviati, N, Setiati, S, Laksmi, PW, et al. (2017) Factors related with handgrip strength in elderly patients. Acta Medica Indonesiana 49, 215219.Google ScholarPubMed
Pinto Pereira, SM, Garfield, V, Farmaki, AE, et al. (2022) Adiposity and grip strength: a Mendelian randomisation study in UK Biobank. BMC Med 20, 201.CrossRefGoogle ScholarPubMed
de Lima, TR, Silva, DAS, de Castro, JAC, et al. (2017) Handgrip strength and associated sociodemographic and lifestyle factors: a systematic review of the adult population. J Bodyw Mov Ther 21, 401413.CrossRefGoogle ScholarPubMed
Gao, Q, Hu, K, Yan, C, et al. (2021) Associated factors of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. Nutrients 13, 4291.CrossRefGoogle Scholar
Rantanen, T, Penninx, BW, Masaki, K, et al. (2000) Depressed mood and body mass index as predictors of muscle strength decline in old men. J Am Geriatr Soc 48, 613617.CrossRefGoogle ScholarPubMed
Lee, H & Park, S (2023) Regional differences in the associations of diet quality, obesity, and possible sarcopenia using the 7th Seventh Korea National Health and Nutrition Examination Survey (2016–2018). Epidemiol Health 45, e2023059.Google Scholar
Park, YK & Yetley, EA (1993) Intakes and food sources of fructose in the United States. Am J Clin Nutr 58, 737s747s.CrossRefGoogle ScholarPubMed
Sakellariou, GK, Davis, CS, Shi, Y, et al. (2014) Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice. FASEB J: Offic Publ Fed Am Soc Exp Biol 28, 16661681.CrossRefGoogle ScholarPubMed
Peterson, CM, Johannsen, DL & Ravussin, E (2012) Skeletal muscle mitochondria and aging: a review. J Aging Res 2012, 194821.CrossRefGoogle ScholarPubMed
Zembroń-Łacny, A, Dziubek, W, Rogowski, Ł, et al. (2014) Sarcopenia: monitoring, molecular mechanisms, and physical intervention. Physiol Res 63, 683691.CrossRefGoogle ScholarPubMed
Visser, M, Pahor, M, Taaffe, DR, et al. (2002) Relationship of interleukin-6 and tumor necrosis factor-α with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol Ser A, Biol Sci Med Sci 57, M326332.CrossRefGoogle ScholarPubMed
Rothman, KJ, Gallacher, JE & Hatch, EE (2013) Why representativeness should be avoided. Int J Epidemiol 42, 10121014.CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material
Download Liu et al. supplementary material(File)
File 242.9 KB