Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-85hf2 Total loading time: 0.307 Render date: 2021-09-23T12:56:24.467Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Interaction of neutrophil counts and folic acid treatment on new-onset proteinuria in hypertensive patients

Published online by Cambridge University Press:  14 December 2020

Zhuxian Zhang
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Mengyi Liu
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Yuanyuan Zhang
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Chun Zhou
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Panpan He
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Huan Li
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Jianping Li
Affiliation:
Department of Cardiology, Peking University First Hospital, Beijing 100034, People’s Republic of China
Yan Zhang
Affiliation:
Department of Cardiology, Peking University First Hospital, Beijing 100034, People’s Republic of China
Min Liang
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Binyan Wang
Affiliation:
Institute of Biomedicine, Anhui Medical University, Hefei 230032, People’s Republic of China
Xin Xu
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Xiaobin Wang
Affiliation:
Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, E4132, Baltimore, MD 21205-2179, USA
Yong Huo
Affiliation:
Department of Cardiology, Peking University First Hospital, Beijing 100034, People’s Republic of China
Fan Fan Hou
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Jing Nie*
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Xiping Xu*
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
Xianhui Qin*
Affiliation:
National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China
*
*Corresponding authors: Xianhui Qin, fax +86-20-87281713, email pharmaqin@126.com; Xiping Xu, fax +86-20-87281713, email xipingxu126@126.com; Jing Nie, fax +86-20-87281713, email niejing@smu.edu.cn
*Corresponding authors: Xianhui Qin, fax +86-20-87281713, email pharmaqin@126.com; Xiping Xu, fax +86-20-87281713, email xipingxu126@126.com; Jing Nie, fax +86-20-87281713, email niejing@smu.edu.cn
*Corresponding authors: Xianhui Qin, fax +86-20-87281713, email pharmaqin@126.com; Xiping Xu, fax +86-20-87281713, email xipingxu126@126.com; Jing Nie, fax +86-20-87281713, email niejing@smu.edu.cn

Abstract

We aimed to examine whether baseline neutrophil counts affected the risk of new-onset proteinuria in hypertensive patients, and, if so, whether folic acid treatment is particularly effective in proteinuria prevention in such a setting. A total of 8208 eligible participants without proteinuria at baseline were analysed from the renal substudy of the China Stroke Primary Prevention Trial. Participants were randomised to receive a double-blind daily treatment of 10 mg of enalapril and 0·8 mg of folic acid (n 4101) or 10 mg of enalapril only (n 4107). The primary outcome was new-onset proteinuria, defined as a urine dipstick reading of ≥1+ at the exit visit. The mean age of the participants was 59·5 (sd, 7·4) years, 3088 (37·6 %) of the participants were male. The median treatment duration was 4·4 years. In the enalapril-only group, a significantly higher risk of new-onset proteinuria was found among participants with higher neutrophil counts (quintile 5; ≥4·8 × 109/l, OR 1·44; 95 % CI 1·00, 2·06), compared with those in quintiles 1–4. For those with enalapril and folic acid treatment, compared with the enalapril-only group, the new-onset proteinuria risk was reduced from 5·2 to 2·8 % (OR 0·49; 95 % CI 0·29, 0·82) among participants with higher neutrophil counts (≥4·8 × 109/l), whereas there was no significant effect among those with neutrophil counts <4·8 × 109/l. In summary, among hypertensive patients, those with higher neutrophil counts had increased risk of new-onset proteinuria, and this risk was reduced by 51 % with folic acid treatment.

Type
Full Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hemmelgarn, BR, Manns, BJ, Lloyd, A, et al. (2010) Relation between kidney function, proteinuria, and adverse outcomes. JAMA 303, 423429.CrossRefGoogle ScholarPubMed
Li, Y, Qin, X, Luo, L, et al. (2017) Folic acid therapy reduces the risk of mortality associated with heavy proteinuria among hypertensive patients. J Hypertens 35, 13021309.CrossRefGoogle ScholarPubMed
Levey, AS, Becker, C, Inker, LA (2015) Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313, 837846.CrossRefGoogle ScholarPubMed
Soehnlein, O, Steffens, S, Hidalgo, A, et al. (2017) Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17, 248261.CrossRefGoogle ScholarPubMed
Liew, PX & Kubes, P (2017) The neutrophil’s role during health and disease. Physiol Rev 99, 12231248.CrossRefGoogle Scholar
Gupta, S & Kaplan, MJ (2016) The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 12, 402413.CrossRefGoogle ScholarPubMed
Muhlhauser, I, Verhasselt, R, Sawicki, PT, et al. (1993) Leucocyte count, proteinuria and smoking in type 1 diabetes mellitus. Acta Diabetol 30, 105107.CrossRefGoogle ScholarPubMed
Cavalot, F, Massucco, P, Perna, P, et al. (2002) White blood cell count is positively correlated with albumin excretion rate in subjects with type 2 diabetes. Diabetes Care 25, 23542355.CrossRefGoogle ScholarPubMed
Tong, PC, Lee, KF, So, WY, et al. (2004) White blood cell count is associated with macro- and microvascular complications in Chinese patients with type 2 diabetes. Diabetes Care 27, 216222.CrossRefGoogle ScholarPubMed
Huang, ZS, Chen, YM, Wu, KD, et al. (2010) Higher peripheral neutrophil and monocyte counts are independent indicators of the presence and severity of proteinuria in apparently normal adults. Intern Med J 40, 3036.CrossRefGoogle ScholarPubMed
Sato, KK, Hayashi, T, Harita, N, et al. (2011) Elevated white blood cell count worsens proteinuria but not estimated glomerular filtration rate: the Kansai Healthcare Study. Am J Nephrol 34, 324329.CrossRefGoogle Scholar
Depeint, F, Bruce, WR, Shangari, N, et al. (2006) Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem-Biol Interact 163, 113132.CrossRefGoogle ScholarPubMed
Doshi, SN, McDowell, IF, Moat, SJ, et al. (2002) Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 105, 2226.CrossRefGoogle ScholarPubMed
Qin, X, Li, J, Cui, Y, et al. (2012) MTHFR C677T and MTR A2756G polymorphisms and the homocysteine lowering efficacy of different doses of folic acid in hypertensive Chinese adults. Nutr J 11, 2.CrossRefGoogle ScholarPubMed
Li, Y, Liang, M, Wang, G, et al. (2017) Effects of folic acid therapy on the new-onset proteinuria in Chinese hypertensive patients. Hypertension 70, 300306.CrossRefGoogle ScholarPubMed
Huo, Y, Li, J, Qin, X, et al. (2015) Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China. JAMA 313, 13251335.CrossRefGoogle ScholarPubMed
Xu, X, Qin, X, Li, Y, et al. (2016) Efficacy of folic acid therapy on the progression of chronic kidney disease. JAMA Intern Med 176, 14431450.CrossRefGoogle ScholarPubMed
Qin, X, Li, J, Zhang, Y, et al. (2016) Effect of folic acid supplementation on risk of new-onset diabetes in adults with hypertension in China: findings from the China Stroke Primary Prevention Trial (CSPPT). J Diabetes 8, 286294.CrossRefGoogle Scholar
Qin, X, Li, Y, He, M, et al. (2017) Folic acid therapy reduces serum uric acid in hypertensive patients: a sub-study of the China Stroke Primary Prevention Trial (CSPPT). Am J Clin Nutr 105, 882889.CrossRefGoogle Scholar
Levey, AS, Stevens, LA, Schmid, CH, et al. (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150, 604612.CrossRefGoogle ScholarPubMed
Gregg, LP & Hedayati, SS (2018) Management of traditional cardiovascular risk factors in CKD: what are the data? Am J Kidney Dis 72, 728744.CrossRefGoogle ScholarPubMed
Tsai, W, Wu, H, Peng, Y, et al. (2016) Risk factors for development and progression of chronic kidney disease. Medicine 95, e3013.CrossRefGoogle ScholarPubMed
Ou, ZL, Nakayama, K, Natori, Y, et al. (2001) Effective methylprednisolone dose in experimental crescentic glomerulonephritis. Am J Kidney Dis 37, 411417.CrossRefGoogle ScholarPubMed
van den Berg, JG & Weening, JJ (2004) Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci (Lond) 107, 125136.CrossRefGoogle ScholarPubMed
Jickling, GC, Liu, D, Ander, BP, et al. (2015) Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 35, 888901.CrossRefGoogle ScholarPubMed
Noubouossie, DF, Reeves, BN, Strahl, BD, et al. (2019) Neutrophils: back in the thrombosis spotlight. Blood 133, 21862197.CrossRefGoogle Scholar
O’Donoghue, AJ, Jin, Y, Knudsen, GM, et al. (2013) Global substrate profiling of proteases in human neutrophil extracellular traps reveals consensus motif predominantly contributed by elastase. PLOS ONE 8, e75141.CrossRefGoogle ScholarPubMed
Pieterse, E, Rother, N, Garsen, M, et al. (2017) Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler Thromb Vasc Biol 37, 13711379.CrossRefGoogle ScholarPubMed
Zeisberg, EM, Potenta, SE, Sugimoto, H, et al. (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19, 22822287.CrossRefGoogle ScholarPubMed
Dejana, E, Orsenigo, F & Lampugnani, MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121, 21152122.CrossRefGoogle ScholarPubMed
Wang, B, Wu, H, Li, Y, et al. (2018) Effect of long-term low-dose folic acid supplementation on degree of total homocysteine-lowering: major effect modifiers. Br J Nutr 120, 11221130.CrossRefGoogle ScholarPubMed
Zhao, M, Wu, G, Li, Y, et al. (2017) Meta-analysis of folic acid efficacy trials in stroke prevention: insight into effect modifiers. Neurology 88, 18301838.CrossRefGoogle ScholarPubMed
Jager, A, Kostense, PJ, Nijpels, G, et al. (2001) Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. Arterioscler Thromb Vasc Biol 21, 7481.CrossRefGoogle ScholarPubMed
Spence, JD, Yi, Q & Hankey, GJ (2017) B vitamins in stroke prevention: time to reconsider. Lancet Neurol 16, 750760.CrossRefGoogle ScholarPubMed
Faraci, FM & Lentz, SR (2004) Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 35, 345347.CrossRefGoogle ScholarPubMed
Verhaar, MC, Stroes, E & Rabelink, TJ (2002) Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol 22, 613.CrossRefGoogle ScholarPubMed
Chen, H, Liu, S, Ji, L, et al. (2016) Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: a randomized controlled trial. Mediators Inflamm 2016, 5912146.Google ScholarPubMed
Cianciolo, G, De Pascalis, A, Di Lullo, L, et al. (2017) Folic acid and homocysteine in chronic kidney disease and cardiovascular disease progression: which comes first. Cardiorenal Med 7, 255266.CrossRefGoogle ScholarPubMed
Capelli, I, Cianciolo, G, Gasperoni, L, et al. (2019) Folic acid and vitamin B12 administration in CKD, why not? Nutrients 11, 383.CrossRefGoogle Scholar
White, SL, Yu, R, Craig, JC, et al. (2011) Diagnostic accuracy of urine dipsticks for detection of albuminuria in the general community. Am J Kidney Dis 58, 1928.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material

Download Zhang et al. supplementary material(File)
File 68 KB
4
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interaction of neutrophil counts and folic acid treatment on new-onset proteinuria in hypertensive patients
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Interaction of neutrophil counts and folic acid treatment on new-onset proteinuria in hypertensive patients
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Interaction of neutrophil counts and folic acid treatment on new-onset proteinuria in hypertensive patients
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *