Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-w9nzq Total loading time: 0.317 Render date: 2021-07-28T11:11:01.623Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Higher adherence to an empirically derived Mediterranean dietary pattern is positively associated with telomere length: the Seguimiento Universidad de Navarra (SUN) project

Published online by Cambridge University Press:  04 November 2020

Ana Ojeda-Rodríguez
Affiliation:
Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain IdiSNA, Navarre’s Institute for Health Research, 31008 Pamplona, Spain
Itziar Zazpe
Affiliation:
Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain IdiSNA, Navarre’s Institute for Health Research, 31008 Pamplona, Spain Department of Preventive Medicine and Public Health, School of Medicine-Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain Institute of Health Carlos III, Biomedical Research Centre Network on Obesity and Nutrition (CIBERobn), Physiopathology of Obesity and Nutrition, 28029 Madrid, Spain
Lucia Alonso-Pedrero
Affiliation:
Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain IdiSNA, Navarre’s Institute for Health Research, 31008 Pamplona, Spain
Guillermo Zalba
Affiliation:
IdiSNA, Navarre’s Institute for Health Research, 31008 Pamplona, Spain Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
Miguel A. Martínez-González
Affiliation:
IdiSNA, Navarre’s Institute for Health Research, 31008 Pamplona, Spain Department of Preventive Medicine and Public Health, School of Medicine-Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain Institute of Health Carlos III, Biomedical Research Centre Network on Obesity and Nutrition (CIBERobn), Physiopathology of Obesity and Nutrition, 28029 Madrid, Spain Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
Amelia Marti
Affiliation:
Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain IdiSNA, Navarre’s Institute for Health Research, 31008 Pamplona, Spain Institute of Health Carlos III, Biomedical Research Centre Network on Obesity and Nutrition (CIBERobn), Physiopathology of Obesity and Nutrition, 28029 Madrid, Spain
Corresponding
E-mail address:

Abstract

Telomere integrity is influenced by oxidative stress. Also, inflammation-related factors, including nutritional factors, could modulate telomere integrity. The relationship between a posteriori-derived dietary patterns and telomere length (TL) has been scarcely investigated. Thus, our objective was to examine the association between empirically derived dietary patterns ascertained through principal component analysis (PCA) and TL in an older adult Spanish population. A total of 886 older adults (>55 years old; 645 males and 241 females) from the Seguimiento Universidad de Navarra (SUN) cohort were included in the study. TL was measured by monochrome multiplex real-time quantitative PCR. Age-adjusted TL was used for all analyses. Dietary patterns were identified by PCA based on thirty predefined candidate food groups collected from a validated 136-food items frequency questionnaire. Generalised linear models were fitted to obtain β-coefficients and their 95 % CI evaluating differences in TL between each of the four upper quintiles of adherence to dietary patterns and the lowest quintile. Sensitivity analyses by rerunning all multiple linear models under different stratifications were performed to evaluate the robustness of our results. Two major dietary patterns were empirically identified, Western dietary pattern (WDP) and Mediterranean dietary pattern (MDP). After adjustment for potential confounders, longer TL was found among subjects in the highest quintile of MDP (β = 0·064; 95 % CI 0·004, 0·123). The WDP showed no significant association with TL. In conclusion, higher adherence to a posteriori-derived MDP was independently associated with longer telomeres in an older adult Spanish population of the SUN project.

Type
Full Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kirchner, H, Shaheen, F, Kalscheuer, H, et al. (2017) The telomeric complex and metabolic disease. Genes (Basel) 8, 176.CrossRefGoogle ScholarPubMed
Xi, H, Li, C, Ren, F, et al. (2013) Telomere, aging and age-related diseases. Aging Clin Exp Res 25, 139146.CrossRefGoogle ScholarPubMed
Fyhrquist, F, Saijonmaa, O & Strandberg, T (2013) The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10, 274283.CrossRefGoogle ScholarPubMed
Marti, A & Zalba, G (editors) (2017) Telomeres, Diet and Human Disease: Advances and Therapeutic Opportunities. Boca Raton, FL: CRC Press.Google Scholar
Starkweather, AR, Alhaeeri, AA, Montpetit, A, et al. (2014) An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs Res 63, 3650.CrossRefGoogle ScholarPubMed
Turner, K, Vasu, V & Griffin, D (2019) Telomere biology and human phenotype. Cells 8, 73.CrossRefGoogle ScholarPubMed
Ojeda-Rodríguez, A, Morell-Azanza, L, Alonso-Pedrero, L, et al. (2018) Aging, telomere integrity, and antioxidant food. In Obesity Oxidative Stress and Dietary Antioxidants, pp. 241261 [Marti, A and Aguilera, CM, editors]. London: Elsevier.Google Scholar
García-Calzón, S & Marti, A (2017) Role of dietary pattern and obesity on telomere homeostasis. In Telomeres, Diet and Human Disease: Advances and Therapeutic Opportunities, pp. 133148 [Marti, A and Zalba, G, editors]. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Marti del Moral, A, Echeverría, R, Morell-Azanza, L, et al. (2017) Telómeros y calidad de la dieta (Telomeres and quality of diet). Nutr Hosp 34, 12261245.Google Scholar
Crous-Bou, M, Fung, TT, Prescott, J, et al. (2014) Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. BMJ 349, g6674.CrossRefGoogle ScholarPubMed
Gu, Y, Honig, LS, Schupf, N, et al. (2015) Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Omaha) 37, 24.CrossRefGoogle Scholar
García-Calzón, S, Martínez-González, MA, Razquin, C, et al. (2016) Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr 35, 13991405.CrossRefGoogle ScholarPubMed
Boccardi, V, Esposito, A, Rizzo, MR, et al. (2013) Mediterranean diet, telomere maintenance and health status among elderly. PLOS ONE 8, e62781.CrossRefGoogle ScholarPubMed
Leung, CW, Fung, TT, McEvoy, CT, et al. (2018) Diet quality indices and leukocyte telomere length among healthy US adults: data from the National Health and Nutrition Examination Survey, 1999–2002. Am J Epidemiol 187, 21922201.CrossRefGoogle ScholarPubMed
Milte, CM, Russell, AP, Ball, K, et al. (2018) Diet quality and telomere length in older Australian men and women. Eur J Nutr 57, 363372.CrossRefGoogle ScholarPubMed
Meinilä, J, Perälä, MM, Kautiainen, H, et al. (2019) Healthy diets and telomere length and attrition during a 10-year follow-up. Eur J Clin Nutr 73, 13521360.CrossRefGoogle ScholarPubMed
Chan, R, Leung, J, Tang, N, et al. (2020) Dietary patterns and telomere length in community-dwelling Chinese older men and women: a cross-sectional analysis. Eur J Nutr 59, 33033311.CrossRefGoogle ScholarPubMed
Ventura Marra, M, Drazba, M, Holásková, I, et al. (2019) Nutrition risk is associated with leukocyte telomere length in middle-aged men and women with at least one risk factor for cardiovascular disease. Nutrients 11, 508.CrossRefGoogle ScholarPubMed
Ojeda-Rodríguez, A, Zazpe, I, Alonso-Pedrero, L, et al. (2019) Association between diet quality indexes and the risk of short telomeres in an elderly population of the SUN project. Clin Nutr 39, 24872494.CrossRefGoogle Scholar
Gong, Y, Tian, G, Xue, H, et al. (2018) Higher adherence to the ‘vegetable-rich’ dietary pattern is related to longer telomere length in women. Clin Nutr 37, 12321237.CrossRefGoogle ScholarPubMed
Stricker, MD, Onland-moret, NC, Boer, JMA, et al. (2013) Dietary patterns derived from principal component- and k-means cluster analysis : long-term association with coronary heart disease and stroke. Nutr Metab Cardiovasc Dis 23, 250256.CrossRefGoogle ScholarPubMed
Zazpe, I, Sánchez-Tainta, A, Toledo, E, et al. (2014) Dietary patterns and total mortality in a Mediterranean cohort: the SUN project. J Acad Nutr Diet 114, 3747.CrossRefGoogle Scholar
Nettleton, JA, Diez-Roux, A, Jenny, NS, et al. (2008) Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 88, 14051412.CrossRefGoogle Scholar
Lee, J, Jun, N, Yoon, D, et al. (2015) Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr 69, 10481052.CrossRefGoogle ScholarPubMed
Karimi, B, Nabizadeh, R, Yunesian, M, et al. (2018) Foods, dietary patterns and occupational class and leukocyte telomere length in the male population. Am J Mens Health 12, 479492.CrossRefGoogle ScholarPubMed
Carlos, S, De La Fuente-Arrillaga, C, Bes-Rastrollo, M, et al. (2018) Mediterranean diet and health outcomes in the SUN cohort. Nutrients 10, 439.CrossRefGoogle ScholarPubMed
Galbete, C, Contreras, R, Martínez, JA, et al. (2012) Physical activity and sex modulate obesity risk linked to 3111tc gene variant of the clock gene in an elderly population: the sun project. Chronobiol Int 29, 13971404.CrossRefGoogle Scholar
Willett, WC (1998) Nutritional epidemiology. In Nutritional Epidemiology, pp. 321346. New York: Oxford University Press.CrossRefGoogle Scholar
De La Fuente-Arrillaga, C, Vázquez Ruiz, Z, Bes-Rastrollo, M, et al. (2010) Reproducibility of an FFQ validated in Spain. Public Health Nutr 13, 13641372.CrossRefGoogle ScholarPubMed
Martin-Moreno, JM, Boyle, P, Gorgojo, L, et al. (1993) Development and validation of a food frequency questionnaire. Int J Epidemiol 22, 512519.CrossRefGoogle ScholarPubMed
Moreiras, O (2003) Tablas De Composicion De Alimentos (Ciencia Y Tecnica) (Food Composition Tables (Science And Technology)), 7th ed. Madrid, Spain: Ediciones Pirámide.Google Scholar
Mataix, J (2003) Tabla de composición de alimentos españoles (Table of Composition of Spanish Foods), 4th ed. Granada, Spain: Universidad de Granada.Google Scholar
Cawthon, RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37, e21.CrossRefGoogle ScholarPubMed
Ainsworth, BE, Haskell, WL, Whitt, MC, et al. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32, S498S504.CrossRefGoogle ScholarPubMed
Donazar-Ezcurra, M, Lopez-Del Burgo, C, Martinez-Gonzalez, MA, et al. (2017) Pre-pregnancy adherences to empirically derived dietary patterns and gestational diabetes risk in a Mediterranean cohort: the Seguimiento Universidad de Navarra (SUN) project. Br J Nutr 118, 715721.CrossRefGoogle Scholar
Zazpe, I, Sánchez-Tainta, A, Toledo, E, et al. (2013) Dietary patterns and total mortality in a Mediterranean cohort: the SUN project. J Acad Nutr Diet 114, 3747.CrossRefGoogle Scholar
Kaiser, HF (1970) A second generation Little Jiffy. Psychometrika 35, 401415.CrossRefGoogle Scholar
Vera, E, Bernardes de Jesus, B, Foronda, M, et al. (2012) The rate of increase of short telomeres predicts longevity in mammals. Cell Rep 2, 732737.CrossRefGoogle ScholarPubMed
Bédard, A, Garcia-Aymerich, J, Sanchez, M, et al. (2015) Confirmatory factor analysis compared with principal component analysis to derive dietary patterns: a longitudinal study in adult women. J Nutr 145, 15591568.CrossRefGoogle ScholarPubMed
Del Bo’, C, Marino, M, Martini, D, et al. (2019) Overview of human intervention studies evaluating the impact of the mediterranean diet on markers of DNA damage. Nutrients 11, 391.CrossRefGoogle ScholarPubMed
Wysocki, K & Seibert, D (2020) Genomics of aging: genes, adducts, and telomeres. J Am Assoc Nurse Pract 32, 419422.CrossRefGoogle ScholarPubMed
Ciprián, D, Navarrete-Muñoz, EM, Garcia de la Hera, M, et al. (2013) Patrón de dieta mediterráneo y occidental en población adulta de un área mediterránea; un análisis clúster (Mediterranean and Western diet pattern in the adult population of a Mediterranean area; a cluster analysis). Nutr Hosp 28, 17411749.Google Scholar
Giménez-blasi, N, Latorre Rodríguez, JA, Martínez Bebia, M, et al. (2017) Seguimiento de la dieta mediterránea (DM) en poblaciones de la ribera del mediterráneo español Introducción Material y métodos (Monitoring of the Mediterranean diet (MD) in populations on the Spanish Mediterranean shore. Introduction Material and methods). Rev Española Nutr Comunitaria 23.Google Scholar
Da Silva, R, Bach-Faig, A, Raidó Quintana, B, et al. (2009) Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr 12, 16761684.CrossRefGoogle ScholarPubMed
Sánchez-Villegas, A, Delgado-Rodríguez, M, Martínez-González, , et al. (2003) Gender, age, socio-demographic and lifestyle factors associated with major dietary patterns in the Spanish project SUN (Seguimiento Universidad de Navarra). Eur J Clin Nutr 57, 285292.CrossRefGoogle Scholar
Oliveira, A, Lopes, C & Rodríguez-Artalejo, F (2010) Adherence to the Southern European Atlantic Diet and occurrence of nonfatal acute myocardial infarction. Am J Clin Nutr 92, 211217.CrossRefGoogle ScholarPubMed
Sofi, F, Vecchio, S, Giuliani, G, et al. (2005) Dietary habits, lifestyle and cardiovascular risk factors in a clinically healthy Italian population: the “Florence” diet is not Mediterranean. Eur J Clin Nutr 59, 584591.CrossRefGoogle Scholar
Masala, G, Ceroti, M, Pala, V, et al. (2007) A dietary pattern rich in olive oil and raw vegetables is associated with lower mortality in Italian elderly subjects. Br J Nutr 98, 406415.CrossRefGoogle Scholar
Maillot, M, Issa, C, Vieux, F, et al. (2011) The shortest way to reach nutritional goals is to adopt Mediterranean food choices: evidence from computer-generated personalized diets. Am J Clin Nutr 94, 11271137.CrossRefGoogle ScholarPubMed
Lin, J, Smith, DL, Esteves, K, et al. (2019) Telomere length measurement by qPCR – Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 99, 271278.CrossRefGoogle ScholarPubMed
Mitchell, C, Hobcraft, J, McLanahan, SS, et al. (2014) Social disadvantage, genetic sensitivity, and children’s telomere length. Proc Natl Acad Sci U S A 111, 59445949.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ojeda-Rodríguez et al. supplementary material

Figure S1

Download Ojeda-Rodríguez et al. supplementary material(File)
File 24 KB
Supplementary material: File

Ojeda-Rodríguez et al. supplementary material

Tables S1-S2

Download Ojeda-Rodríguez et al. supplementary material(File)
File 18 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Higher adherence to an empirically derived Mediterranean dietary pattern is positively associated with telomere length: the Seguimiento Universidad de Navarra (SUN) project
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Higher adherence to an empirically derived Mediterranean dietary pattern is positively associated with telomere length: the Seguimiento Universidad de Navarra (SUN) project
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Higher adherence to an empirically derived Mediterranean dietary pattern is positively associated with telomere length: the Seguimiento Universidad de Navarra (SUN) project
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *