Hostname: page-component-cd4964975-598jt Total loading time: 0 Render date: 2023-03-30T09:19:13.980Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Effects of folic acid and cobalt sulphate supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Holstein calves

Published online by Cambridge University Press:  21 June 2021

Yongjia Liu
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Jing Zhang
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Cong Wang
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Qiang Liu*
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Gang Guo
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Wenjie Huo
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Lei Chen
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Yanli Zhang
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Caixia Pei
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
Shuanlin Zhang
Affiliation:
College of Animal Science, Shanxi Agricultural University, Taigu030801, Shanxi Province, People’s Republic of China
*
*Corresponding author: Qiang Liu, email liuqiangabc@163.com

Abstract

To investigate the influences of cobalt (Co) and folic acid (FA) on growth performance and rumen fermentation, Holstein male calves (n 40) were randomly assigned to four groups according to their body weights. Cobalt sulphate at 0 or 0·11 mg Co/kg DM and FA at 0 or 7·2 mg/kg DM were used in a 2 × 2 factorial design. Average daily gain was elevated with FA or Co supplementation, but the elevation was greater for supplementing Co in diets without FA than with FA. Supplementing FA or Co increased DM intake and total-tract nutrient digestibility. Rumen pH was unaltered with FA but reduced with Co supplementation. Concentration of rumen total volatile fatty acids was elevated with FA or Co inclusion. Acetate percentage and acetate to propionate ratio were elevated with FA inclusion. Supplementing Co decreased acetate percentage and increased propionate percentage. Activities of xylanase and α-amylase and populations of total bacteria, fungi, protozoa, Ruminococcus albus, Fibrobacter succinogenes and Prevotella ruminicola increased with FA or Co inclusion. Activities of carboxymethyl-cellulase and pectinase increased with FA inclusion and population of methanogens decreased with Co addition. Blood folates increased and homocysteine decreased with FA inclusion. Blood glucose and vitamin B12 increased with Co addition. The data suggested that supplementing 0·11 mg Co/kg DM in diets containing 0·09 mg Co/kg DM increased growth performance and nutrient digestibility but had no improvement on the effects of FA addition in calves.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

NRC (2001) Nutrient Requirements of Dairy Cattle. 7th rev. ed. Washington, DC: The National Academies Press.Google Scholar
Girard, CL & Matte, JJ (2006) Impact of B-vitamin supply on major metabolic pathways of lactating dairy cows. Can J Anim Sci 86, 213220.10.4141/A05-058CrossRefGoogle Scholar
Tiffany, ME & Spears, JW (2005) Differential responses to dietary cobalt in finishing steers fed corn v. barley-base diets. J Anim Sci 83, 25802589.CrossRefGoogle Scholar
Tiffany, ME, Spears, JW, Xi, L, et al. (2003) Influence of supplemental cobalt source and concentration on performance, vitamin B12 status, and ruminal and plasma metabolites in growing and finishing steers. J Anim Sci 81, 31513159.CrossRefGoogle ScholarPubMed
Stangl, GI, Schwarz, FJ, Müller, H, et al. (2000) Evaluation of the cobalt requirement of beef cattle based on vitamin B12, folate, homocysteine and methylmalonic acid. Brit J Nutr 84, 645653.CrossRefGoogle ScholarPubMed
Schwarz, FJ, Kirchgessner, M & Stangl, GI (2000) Cobalt requirement of beef cattle-feed intake and growth at different levels of cobalt supply. J Anim Physiol Anim Nutr 83, 121131.CrossRefGoogle Scholar
Wang, RL, Kong, XH, Zhang, YZ, et al. (2007) Influence of dietary cobalt on performance, nutrient digestibility and plasma metabolites in lambs. Anim Feed Sci Technol 135, 346352.CrossRefGoogle Scholar
Chen, M & Wolin, MJ (1981) Influence of heme and vitamin B12 on growth and fermentations of Bacteroides species. J Bacteriol 145, 466471.CrossRefGoogle ScholarPubMed
Strobel, HJ (1992) Vitamin B12-dependant propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl Environ Microbiol 58, 23312333.CrossRefGoogle ScholarPubMed
Bertolo, RF & Mcbreairty, LE (2013) The nutritional burden of methylation reactions. Curr Opin Clin Nutr Metab Care 16, 102108.CrossRefGoogle ScholarPubMed
Hall, G, Cheng, EW & Burrows, W (1953) B-vitamins and other factors stimulatory to cellulose digestion by washed suspensions of rumen microorganisms. J Anim Sci 12, 918919.Google Scholar
Slyter, LL & Weaver, JM (1977) Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens . Appl Environ Microb 33, 363369.10.1128/aem.33.2.363-369.1977CrossRefGoogle ScholarPubMed
Wang, C, Wu, XX, Liu, Q, et al. (2019) Effects of folic acid on growth performance, ruminal fermentation, nutrient digestibility and urinary excretion of purine derivatives in post-weaned dairy calves. Arch Anim Nutr 73, 1829.10.1080/1745039X.2018.1547028CrossRefGoogle ScholarPubMed
Liu, YR, Du, HS, Wu, ZZ, et al. (2020) Branched-chain volatile fatty acids and folic acid accelerated the growth of Holstein dairy calves by stimulating nutrient digestion and rumen metabolism. Animal 14, 11761183.10.1017/S1751731119002969CrossRefGoogle ScholarPubMed
Parnian-Khajehdizaj, F, Taghizadeh, A, Hosseinkhani, A, et al. (2018) Evaluation of dietary supplementation of B vitamins and HMBI on fermentation kinetics, ruminal or post-ruminal diet digestibility using modified in vitro techniques. J Biosci Biotech 7, 125133.Google Scholar
Preynat, A, Lapierre, H, Thivierge, MC, et al. (2009) Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J Dairy Sci 92, 677689.CrossRefGoogle ScholarPubMed
Graulet, B, Matte, JJ, Desrochers, A, et al. (2007) Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. J Dairy Sci 90, 34423455.CrossRefGoogle ScholarPubMed
AOAC (2006) Official Methods of Analysis. 18th ed. Gaithersburg, MD: Association of Official Analytical Chemists International.Google Scholar
Van Soest, PJ, Robertson, JB & Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74, 35833597.10.3168/jds.S0022-0302(91)78551-2CrossRefGoogle Scholar
Van-Keulen, J & Young, BA (1977) Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci 44, 282289.CrossRefGoogle Scholar
Alaburda, J, De Almeida, AP, Shundo, L, et al. (2008) Determination of folic acid in fortified wheat flours. J Food Compos Anal 21, 336342.10.1016/j.jfca.2007.12.002CrossRefGoogle Scholar
Lodge-Ivey, SL, Browne-Silva, J & Horvath, MB (2009) Technical note: bacterial diversity and fermentation end products in rumen fluid samples collected via oral lavage or rumen cannula. J Anim Sci 87, 23332337.CrossRefGoogle ScholarPubMed
Erwin, ES, Marco, GJ & Emery, EM (1961) Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci 44, 17681771.10.3168/jds.S0022-0302(61)89956-6CrossRefGoogle Scholar
Agarwal, N, Kamra, DN, Chaudhary, LC, et al. (2002) Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Lett Appl Microbiol 34, 329336.10.1046/j.1472-765X.2002.01092.xCrossRefGoogle ScholarPubMed
Yu, Z & Morrison, M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal sample. Bio Tech 36, 808812.Google Scholar
Kongmun, P, Wanapat, M, Pakdee, P, et al. (2010) Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest Sci 127, 3844.CrossRefGoogle Scholar
Hasnat, F, Bhuiyan, HA & Misbahuddin, M (2017) Estimation of vitamin B12 in plasma by High Performance Liquid Chromatography. Bangladesh J Pharmacol 12, 251255.10.3329/bjp.v12i3.33108CrossRefGoogle Scholar
SAS (Statistics Analysis System) (2002) User’s Guide: Statistics, Version 9 Edition. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Allen, MS (2000) Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J Dairy Sci 83, 15981624.CrossRefGoogle ScholarPubMed
Marston, HR, Allen, SH & Smith, RM (1972) Production within the rumen and removal from the blood stream of volatile fatty acids in sheep given a diet deficient in cobalt. Br J Nutr 27, 147157.CrossRefGoogle Scholar
Lopez-Guisa, JM & Satter, LD (1992) Effect of copper and cobalt addition on digestion and growth in Heifers fed diets containing alfalfa silage or corn crop residues. J Dairy Sci 75, 247256.10.3168/jds.S0022-0302(92)77759-5CrossRefGoogle ScholarPubMed
Kadim, IT, Johnson, EH, Mahgoub, O, et al. (2003) Effect of low levels of dietary cobalt on apparent nutrient digestibility in Omani goats. Anim Feed Sci Technol 109, 209216.10.1016/S0377-8401(03)00174-3CrossRefGoogle Scholar
Jayasundara, S, Appuhamy, JADRN, Kebreab, E, et al. (2016) Methane and nitrous oxide emissions from Canadian dairy farms and mitigation options: an updated review. Can J Anim Sci 96, 306331.10.1139/cjas-2015-0111CrossRefGoogle Scholar
Stemme, K, Lebzien, P, Flachowsky, G, et al. (2008) The influence of an increased cobalt supply on ruminal parameters and microbial vitamin B12 synthesis in the rumen of dairy cows. Arch Anim Nutr 62, 207218.CrossRefGoogle ScholarPubMed
Schwab, EC, Schwab, CG, Shaver, RD, et al. (2006) Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. J Dairy Sci 89, 174187.10.3168/jds.S0022-0302(06)72082-3CrossRefGoogle ScholarPubMed
Sacadura, FC, Robinson, PH, Evans, E, et al. (2008) Effects of a ruminally protected B-vitamin supplement on milk yield and composition of lactating dairy cows. Anim Feed Sci Technol 144, 111124.CrossRefGoogle Scholar
Petitclerc, D, Dumoulin, P, Ringuet, H, et al. (1999) Plane of nutrition and folic acid supplementation between birth and 4 months of age on mammary development of dairy heifers. Can J Anim Sci 79, 227234.CrossRefGoogle Scholar
Longnecker, DS (2002) Abnormal methyl metabolism in pancreatic toxicity and diabetes. J Nutr 132, 2373S2376S.CrossRefGoogle ScholarPubMed
Lee, SS, Ha, JK & Cheng, KJ (2000) Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass. Appl Environ Microb 66, 38073813.CrossRefGoogle ScholarPubMed
Fondevila, M & Dehority, BA (1996) Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J Anim Sci 74, 678684.CrossRefGoogle ScholarPubMed
González-Montaña, JR, Escalera-Valente, F, Alonso, AJ, et al. (2020) Relationship between vitamin B12 and cobalt metabolism in domestic ruminant: an update. Animals 10, 1855.CrossRefGoogle ScholarPubMed