Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-2fphr Total loading time: 0.262 Render date: 2021-06-21T14:33:00.897Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effects of copper sulphate and coated copper sulphate addition on lactation performance, nutrient digestibility, ruminal fermentation and blood metabolites in dairy cows

Published online by Cambridge University Press:  28 July 2020

C. Wang
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
L. Han
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
G. W. Zhang
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
H. S. Du
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
Z. Z. Wu
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
Q. Liu
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
G. Guo
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
W. J. Huo
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
J. Zhang
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
Y. L. Zhang
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
C. X. Pei
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
S. L. Zhang
Affiliation:
Department of Animal Nutrition and Feed Science, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People’s Republic of China
Corresponding
E-mail address:

Abstract

Coated copper sulphate (CCS) could be used as a Cu supplement in cows. To investigate the influences of copper sulphate (CS) and CCS on milk performance, nutrient digestion and rumen fermentation, fifty Holstein dairy cows were arranged in a randomised block design to five groups: control, CS addition (7·5 mg Cu/kg DM from CS) or CCS addition (5, 7·5 and 10 mg Cu/kg DM from CCS, respectively). When comparing Cu source at equal inclusion rates (7·5 mg/kg DM), cows receiving CCS addition had higher yields of fat-corrected milk, milk fat and protein; digestibility of DM, organic matter (OM) and neutral-detergent fibre (NDF); ruminal total volatile fatty acid (VFA) concentration; activities of carboxymethyl cellulase, cellobiase, pectinase and α-amylase; populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes; and liver Cu content than cows receiving CS addition. Increasing CCS addition, DM intake was unchanged, yields of milk, milk fat and protein; feed efficiency; digestibility of DM, OM, NDF and acid-detergent fibre; ruminal total VFA concentration; acetate:propionate ratio; activity of cellulolytic enzyme; populations of total bacteria, protozoa and dominant cellulolytic bacteria; and concentrations of Cu in serum and liver increased linearly, but ruminal propionate percentage, ammonia-N concentration, α-amylase activity and populations of Prevotella ruminicola and Ruminobacter amylophilus decreased linearly. The results indicated that supplement of CS could be substituted with CCS and addition of CCS improved milk performance and nutrient digestion in dairy cows.

Type
Full Papers
Copyright
© The Author(s), 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

National Research Council (2001) Nutrient Requirements of Dairy Cattle, 7th rev. ed. Washington, DC: National Academies Press.Google Scholar
Spears, JW (2003) Trace mineral bioavailability in ruminants. J Nutr 133, 15061509.CrossRefGoogle ScholarPubMed
Engle, TE, Fellner, V & Spears, JW (2001) Copper status, serum cholesterol, and milk fatty acid profile in Holstein cows fed varying concentrations of copper. J Dairy Sci 84, 23082313.CrossRefGoogle ScholarPubMed
Morales, MS, Palmquist, DL & Weiss, WP (2000) Milk fat composition of Holstein and Jersey cows with control or depleted copper status and fed whole soybeans or tallow. J Dairy Sci 83, 21122119.CrossRefGoogle ScholarPubMed
Zhang, W, Wang, RL, Zhu, XP, et al. (2007) Effects of dietary copper on ruminal fermentation, nutrient digestibility and fibre characteristics in cashmere goats. Asian Australas J Anim Sci 20, 18431848.CrossRefGoogle Scholar
Mondal, MK & Biswas, P (2007) Different sources and levels of copper supplementation on performance and nutrient utilization of castrated black Bengal (Capra hircus) kids diet. Asian Australas J Anim Sci 20, 10671075.CrossRefGoogle Scholar
Vázquez-Armijo, JF, Martínez-Tinajero, JJ, López, D, et al. (2011) In vitro gas production and dry matter degradability of diets consumed by goats with or without copper and zinc supplementation. Biol Trace Elem Res 144, 580587.CrossRefGoogle ScholarPubMed
Engle, TE & Spears, JW (2000) Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. J Anim Sci 78, 24522458.CrossRefGoogle ScholarPubMed
Solaiman, SG, Craig, TJ, Reddy, G, et al. (2007) Effect of high levels of Cu supplement on growth performance, rumen fermentation, and immune responses in goat kids. Small Ruminant Res 69, 115123.CrossRefGoogle Scholar
Bremner, I, Humphries, WR, Phillippo, M, et al. (1987) Iron-induced copper deficiency in calves: Doseresponse relationships and interactions with molybdenum and sulphur. Anim Prod 45, 403414.Google Scholar
Gould, L & Kendall, NR (2011) Role of the rumen in copper and thiomolybdate absorption. Nutr Res Rev 24, 176182.CrossRefGoogle ScholarPubMed
Wang, F, Li, SL, Xin, J, et al. (2012) Effects of methionine hydroxy copper supplementation on lactation performance, nutrient digestibility, and blood biochemical parameters in lactating cows. J Dairy Sci 95, 58135820.CrossRefGoogle ScholarPubMed
Wang, C, Liu, Q, Guo, G, et al. (2016) Effects of rumen-protected folic acid on ruminal fermentation, microbial enzyme activities, cellulolytic bacteria and urinary excretion of purine derivatives in growing beef steers. Anim Feed Sci Technol 221, 185194.CrossRefGoogle Scholar
Ferret, A, Plaixats, J, Caja, G, et al. (1999) Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Ruminant Res 33, 145152.CrossRefGoogle Scholar
Gross, J, Dorland, HA, Schwarz, FJ, et al. (2011) Endocrine changes and liver mRNA abundance of somatotropic axis and insulin system constituents during negative energy balance at different stages of lactation in dairy cows. J Dairy Sci 94, 34843494.CrossRefGoogle ScholarPubMed
AOAC (2000) Official Methods of Analysis, 17th ed. Arlington, VA: Association of Official Analytical Chemists.Google Scholar
Van Soest, PJ, Robertson, JB & Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74, 35833597.CrossRefGoogle Scholar
Gengelbach, GP, Ward, JD & Spears, JW (1994) Effect of dietary copper, iron, and molybdenum on growth and copper status of beef cows and calves. J Anim Sci 72, 27222727.CrossRefGoogle ScholarPubMed
Webb, S, Bartos, J, Boles, R, et al. (2014) Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasmaoptical emission spectrometry detection: Single laboratory validation of a modification and extension of AOAC 2006.03. J AOAC Int 97, 700711.CrossRefGoogle Scholar
Agarwal, N, Kamra, DN, Chaudhary, LC, et al. (2002) Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Lett Appl Microbiol 34, 329336.CrossRefGoogle ScholarPubMed
Yu, Z & Morrison, M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal sample. Biotechniques 36, 808812.CrossRefGoogle Scholar
Kongmun, P, Wanapat, M, Pakdee, P, et al. (2010) Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest Sci 127, 3844.CrossRefGoogle Scholar
SAS (Statistics Analysis System) (2002) User’s Guide: Statistics , 9th ed. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Noziere, P, Glasser, F & Sauvant, D (2011) In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach. Animal 5, 403414.CrossRefGoogle ScholarPubMed
Mansson, HL (2008) Fatty acids in bovine milk fat. Food Nutr Res 52, 13.Google ScholarPubMed
Maxin, G, Glasser, F, Hurtaud, C, et al. (2011) Combined effects of trans-10, cis-12 conjugated linoleic acid, propionate, and acetate on milk fat yield and composition in dairy cows. J Dairy Sci 94, 20512059.CrossRefGoogle ScholarPubMed
Sheng, R, Yan, SM, Qi, LZ, et al. (2015) Effect of the ratios of acetate and β-hydroxybutyrate on the expression of milk fat- and protein-related genes in bovine mammary epithelial cells. Czech J Anim Sci 60, 531541.CrossRefGoogle Scholar
Ridge, PG, Zhang, Y & Gladyshev, VN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE 3, e1378.CrossRefGoogle Scholar
Lopez-Guisa, JM & Satter, LD (1992) Effect of copper and cobalt addition on digestion and growth in Heifers fed diets containing alfalfa silage or corn crop residues. J Dairy Sci 75, 247256.CrossRefGoogle ScholarPubMed
Hernández-Sánchez, D, Cervantes-Gómez, D, Ramírez-Bribiesca, JE, et al. (2019) The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production. J Sci Food Agric 99, 10731077.CrossRefGoogle ScholarPubMed
Huhtanen, P, Miettinen, H & Ylinen, M (1993) Effect of increasing ruminal butyrate on milk yield and blood constituents in dairy cows fed a grass silage-based diet. J Dairy Sci 76, 11141124.CrossRefGoogle ScholarPubMed
Miettinen, H & Huhtanen, P (1996) Effects of the ratio of ruminal propionate to butyrate on milk yield and blood metabolites in dairy Cows. J Dairy Sci 79, 851861.CrossRefGoogle ScholarPubMed
Bach, A, Calsamiglia, S & Stern, MD (2005) Nitrogen metabolism in the rumen. J Dairy Sci 88, E9E21.CrossRefGoogle ScholarPubMed
Dijkstra, J (1994) Simulation of the dynamics of protozoa in the rumen. Br J Nutr 72, 679699.CrossRefGoogle ScholarPubMed
Kendall, NR, Holmes-Pavord, HR, Bone, PA, et al. (2015) Liver copper concentrations in cull cattle in the UK – are we copper loading cattle? Vet Rec 177, 493496.CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of copper sulphate and coated copper sulphate addition on lactation performance, nutrient digestibility, ruminal fermentation and blood metabolites in dairy cows
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of copper sulphate and coated copper sulphate addition on lactation performance, nutrient digestibility, ruminal fermentation and blood metabolites in dairy cows
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of copper sulphate and coated copper sulphate addition on lactation performance, nutrient digestibility, ruminal fermentation and blood metabolites in dairy cows
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *