Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T12:26:21.815Z Has data issue: false hasContentIssue false

Action of ciprofloxacin on planktonic bacteria and biofilm of Proteus mirabilis

Published online by Cambridge University Press:  01 January 2006

I. Albesa*
Affiliation:
Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
*
*Corresponding author: Dr I. Albesa Departamento de Farmacia Facultad de Ciencias Químicas Universidad Nacional de Córdoba Haya de la Torre y Medina Allende 5000 Córdoba Argentina T 54 0351 4334163 ext. 104 F 54 0351 4334127 Einesalbesa@fcq.unc.edu.ar

Abstract

Proteus mirabilis can persist in biofilms, with the bacteria in this state tending to resist antibiotic therapy. Until now, the relationship between the action of ciprofloxacin and the production of reactive oxygen species (ROS) has not been studied in planktonic and biofilmic P. mirabilis. Our results show that ciprofloxacin stimulates the production of ROS in planktonic P. mirabilis, but that the increase in ROS was observed in sensitive strains (n = 4) only in the absence of the extracellular matrix (ECM). This augmentation of ROS was principally intracellular, invoking an increase in intracellular superoxide dismutase (SOD). ROS were assayed by chemiluminescence (CL) and SOD by inhibition of reduction of nitroblue tetrazolium in the presence of methionine, riboflavin and light. The antibiotic-resistant strains (n = 4) did not suffer oxidative stress and exhibited a higher antioxidant capacity than antibiotic-sensitive ones, as indicated by tripyridyltriazine assay. Both types of bacterial strain showed a reduction in antioxidant capacity in the presence of ciprofloxacin, and only the resistant bacteria returned to normal count levels within 5 min of introduction of antibiotic. Ciprofloxacin stimulated ROS more than it did nitric oxide (NO) in planktonic bacteria, as determined by Griess's reaction. Proteus mirabilis biofilms treated with ciprofloxacin did not suffer any increase in ROS but there was an increase in NO and the ratio of intracellular ROS:NO decreased to 25%. Biofilms of P. mirabilis were neither stressed nor inhibited by 40 µg ciprofloxacin/ml, a dose higher than the minimum inhibitory concentration (i.e. supra MIC). Both resistant and sensitive strains maintained the number of viable bacteria in biofilms incubated with supra MIC ciprofloxacin at concentrations that stressed and reduced substantially the number of colony-forming units of planktonic bacteria per millilitre. These results contribute to understanding of the differences between biofilmic and planktonic bacteria, with respect to susceptibility to oxidative stress caused by ciprofloxacin and also the antioxidant effect of ECM.

Type
Original article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alavi, M. & Belas, R. (2001) Surface sensing, swarmer cell differentiation, and biofilm development. Methods in Enzymology 336, 2940.CrossRefGoogle ScholarPubMed
Albesa, I., Becerra, C., Battán, P. & Páez, P. (2004) Oxidative stress evolved in the antibacterial action of different antibiotics. Biochemical and Biophysical Research Communications 317, 605609CrossRefGoogle Scholar
Anderl, J. N., Franklin, M. J. & Stewart, P. S. (2000) Role of antibiotic limitation in Klebsiella penumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy 44, 18181824CrossRefGoogle Scholar
Battán, P. C., Barnes, A. I. & Albesa, I. (2004) Resistance to oxidative stress caused by ceftazidime and piperacillin in biofilm of Pseudomonas. Luminiscence 19, 265270CrossRefGoogle ScholarPubMed
Brenner, D. J., Krieg, N. R., Staley, J. R. & Garrity, G. (2004) Family Enterobacteriaceae. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, pp. 1106. Edited by Brenner, D. J., Krieg, N. R. & Staley, J. T.. New York: Springer-VerlagGoogle Scholar
Bret, L. & Di Martino, P. (2004) Effect of ceftazidime, amikacin and ciprofloxacin on biofilm formation by some enterobacterial clinical isolates. Chemotherapy 50, 255259CrossRefGoogle ScholarPubMed
Dayton, T. M., Diefenbach, K. A., Fuller, M. L., Valtos, J. & Niederhoffer, E. C. (1996) Production of superoxide dismutases from Proteus mirabilis and Proteus vulgaris. Biometals 9, 131137CrossRefGoogle ScholarPubMed
Eickhoff, J., Potts, E., Valtos, J. & Niederhoffer, E. C. (1995) Heavy metal effects on Proteus mirabilis superoxide dismutase production. FEMS Microbiological Letters 132, 271276CrossRefGoogle ScholarPubMed
Ghaffari, A., Miller, C. C., McMullin, B. & Ghahary, A. (2006) Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide 14, 2129CrossRefGoogle ScholarPubMed
Gusarov, I. & Nudler, E. (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proceedings of the National Academy of Sciences 102, 1385513860CrossRefGoogle ScholarPubMed
Jones, G. L., Russell, A. D., Caliskan, Z. & Stickler, D. J. (2005) A strategy for the control of catheter blockage by crystalline Proteus mirabilis biofilm using the antibacterial agent triclosan. European Urology 48, 838845CrossRefGoogle ScholarPubMed
Liaw, S. J., Lai, H. C., Ho, S. W., Luh, K. T. & Wang, W. B. (2003) Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. Journal of Medical Microbiology 52,1928Google ScholarPubMed
Mahbubur Rahman, M., Guard-Petter, J., Asokan, K., Hughes, C. & Carlson, R. W. (1999) The structure of the colony migration factor from pathogenic Proteus mirabilis. A capsular polysaccharide that facilitates swarming. Journal of Biological Chemistry 274, 2299322998Google Scholar
Mathur, S., Suller, M. T., Stickler, D. J. & Feneley, R. C. (2006) Prospective study of individuals with long-term urinary catheters colonized with Proteus species. BJU International 97, 121128CrossRefGoogle ScholarPubMed
Morris, N. S. & Stickler, D. J. (2001) Does drinking cranberry juice produce urine inhibitory to the development of crystalline, catheter-blocking Proteus mirabilis biofilms? BJU International. 88, 192197CrossRefGoogle Scholar
Park, J. H., Cho, Y. W., Kwon, I. C., Jeong, S. Y. & Bae, Y. H. (2002) Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior. Biomaterials 23, 39914000CrossRefGoogle ScholarPubMed
Rather, P. N. (2005) Swarmer cell differentiation in Proteus mirabilis. Environmental Microbiology 7, 10651073CrossRefGoogle ScholarPubMed
Reed, W. P., Moody, M. R., Newman, K. A., Light, P. D. & Costerton, J. W. (1986) Bacterial colonization of Hemasite access devices. Surgery 99, 308317Google ScholarPubMed
Sabbuba, N., Hughes, G. & Stickler, D. J. (2002) The migration of Proteus mirabilis and other urinary tract pathogens over Foley catheters. BJU International 89, 5560CrossRefGoogle ScholarPubMed
Scalzo, J., Mezzetti, B. & Battino, M. (2005) Total antioxidant capacity evaluation: critical steps for assaying berry antioxidant features. Biofactors 23, 221227CrossRefGoogle ScholarPubMed
Subczynski, W. K., Lomnicka, M. & Hyde, J. S. (1996) Permeability of nitric oxide through lipid bilayer membranes. Free Radical Research 24, 343349CrossRefGoogle ScholarPubMed
Watmough, N. J., Butland, G., Cheesman, M. R., Moir, J. W., Richardson, D. J. & Spiro, S. (1999) Nitric oxide in bacteria: synthesis and consumption. Biochemica et Biophysica Acta 1411, 456474CrossRefGoogle ScholarPubMed