Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T20:09:58.622Z Has data issue: false hasContentIssue false

Conflict monitoring and detection in the bilingual brain

Published online by Cambridge University Press:  26 December 2017

SUSAN TEUBNER-RHODES*
Affiliation:
Department of Psychology, Program in Neuroscience and Cognitive Science, University of Maryland, College Park
DONALD J. BOLGER
Affiliation:
Program in Neuroscience and Cognitive Science, Human Development and Quantitative Methodology, University of Maryland, College Park
JARED M. NOVICK
Affiliation:
Program in Neuroscience and Cognitive Science, Department of Hearing and Speech Sciences, Center for Advanced Study of Language, University of Maryland, College Park
*
Address for correspondence: Susan Teubner-Rhodes, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, MSC550, Charleston, SC 29425teubnera@musc.edu

Abstract

Bilinguals sometimes outperform monolinguals on tasks involving cognitive control – the regulation of mental activity when confronted with information-processing conflict – perhaps stemming from experience monitoring for and resolving conflict between languages. We test the hypothesis that bilingualism affects moment-to-moment cognitive-control recruitment by examining how trial history influences bilinguals’ and monolinguals’ behavioral performance and associated neural activity on a Stroop task. We assessed dynamic effects of preceding trial conflict on current trial performance to separate the ability to proactively detect conflict (performance on new instances of conflict) from the ability to reactively recruit cognitive control (performance on trials following conflict). Across two experiments, monolinguals’ – but not bilinguals’ – accuracy decreased after non-conflict trials, i.e., when detecting initial conflicts. Bilinguals exhibited greater conflict-detection activity in ventrolateral prefrontal cortex (vlPFC/insula; BA 47) within a language-switching network, suggesting that they may monitor for information-conflict more proactively than monolinguals by recruiting brain regions involved in switching languages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors thank Angie Laird and Gigi Luk for correspondence regarding region of interest analyses. This material is based upon work supported, in whole or in part, with funding from the United States Government. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the University of Maryland, College Park and/or any agency or entity of the United States Government. This work was supported in part by NSF-IGERT training grant DGE-0801465.

References

Abutalebi, J., Brambati, S. M., Annoni, J. M., Moro, A., Cappa, S. F., & Perani, D. (2007). The neural cost of the auditory perception of language switches: An event-related functional magnetic resonance imaging study in bilinguals. The Journal of Neuroscience, 27 (50), 1376213769. doi:10.1523/JNEUROSCI.3294-07.2007Google Scholar
Abutalebi, J., Della Rosa, P. A., Ding, G., Weekes, B., Costa, A., & Green, D. W. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49 (3), 905911. doi:10.1016/j.cortex.2012.08.018Google Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., Cappa, S. R., & Costa, A. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22 (9), 20762086. doi:10.1093/cercor/bhr287Google Scholar
Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy white women. Health Psychology, 19 (6), 586592.10.1037/0278-6133.19.6.586Google Scholar
Antón, E., Duñabeitia, J. A., Estévez, A., Hernández, J. A., Castillo, A., Fuentes, L. J., Davidson, D. J., & Carreiras, M. (2014). Is there a bilingual advantage in the ANT task? Evidence from children. Frontiers in Psychology, 5, 398. doi:10.3389/fpsyg.2014.00398Google Scholar
Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47 (6), 907918. doi:10.1016/j.neuron.2005.07.023Google Scholar
Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J., & Snyder, A. Z. (2001). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cerebral Cortex, 11 (837–848).10.1093/cercor/11.9.837Google Scholar
Bartolotti, J., & Marian, V. (2012). Language learning and control in monolinguals and bilinguals. Cognitive Science, 36 (6), 11291147. doi:10.1111/j.1551-6709.2012.01243.xGoogle Scholar
Bialystok, E. (2006). Effect of bilingualism and computer video game experience on the Simon task. Canadian Journal of Experimental Psychology, 60 (1), 6879. doi:10.1037/cjep2006008Google Scholar
Bialystok, E. (2010). Global-local and trail-making tasks by monolingual and bilingual children: Beyond inhibition. Developmental Psychology, 46 (1), 93105. doi:10.1037/a0015466Google Scholar
Bialystok, E., Craik, F., & Luk, G. (2008). Cognitive control and lexical access in younger and older bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34 (4), 859873. doi:10.1037/0278-7393.34.4.859Google Scholar
Bialystok, E., Craik, F. I., Green, D. W., & Gollan, T. H. (2009). Bilingual minds. Psychological Science in the Public Interest, 10 (3), 89129. doi:10.1177/1529100610387084Google Scholar
Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging, and cognitive control: Evidence from the Simon task. Psychology and Aging, 19 (2), 290303. doi:10.1037/0882-7974.19.2.290Google Scholar
Bialystok, E., & Viswanathan, M. (2009). Components of executive control with advantages for bilingual children in two cultures. Cognition, 112 (3), 494500. doi:10.1016/j.cognition.2009.06.014Google Scholar
Blanco-Elorrieta, E., & Pylkkanen, L. (2016). Bilingual language control in perception versus action: MEG reveals comprehension control mechanisms in anterior cingulate cortex and domain-general control of production in dorsolateral prefrontal cortex. The Journal of Neuroscience, 36 (2), 290301. doi:10.1523/JNEUROSCI.2597-15.2016Google Scholar
Bonnet, C., & Dresp, B. (1993). A fast procedure for studying conditional accuracy functions. Behavioral Research Methods, Instruments, & Computers, 25 (1), 28.10.3758/BF03204443Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108 (3), 624652. doi:10.1037/0033-295X.108.3.624Google Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8 (12), 539546. doi:10.1016/j.tics.2004.10.003Google Scholar
Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179181.Google Scholar
Branzi, F. M., Calabria, M., Gade, M., Fuentes, L. J., & Costa, A. (2016). On the bilingualism effect in task switching. Bilingualism: Language and Cognition, 114. doi:10.1017/s136672891600119xGoogle Scholar
Branzi, F. M., Della Rosa, P. A., Canini, M., Costa, A., & Abutalebi, J. (2016). Language control in bilinguals: Monitoring and response selection. Cerebral Cortex, 26, 23672380. doi:10.1093/cercor/bhv052Google Scholar
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16 (2), 106113. doi:10.1016/j.tics.2011.12.010Google Scholar
Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39 (4), 713726. doi:10.1016/s0896-6273(03)00466-5Google Scholar
Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan.Google Scholar
Bub, D. N., Masson, M. E. J., & Lalonde, C. E. (2006). Cognitive control in children: Stroop interference and suppression of word reading. Psychological Science, 17 (4), 351357.Google Scholar
Carter, C. S., MacDonald, A. M., Botvinick, M. M., Ross, L. L., Stenger, V. A., Noll, D. C., & Cohen, J. D. (2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences, 97 (4), 19441948.Google Scholar
Chambers, C. G., & Cooke, H. (2009). Lexical competition during second-language listening: Sentence context, but not proficiency, constrains interference from the native lexicon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35 (4), 10291040. doi:10.1037/a0015901Google Scholar
Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience and Biobehavioral Reviews, 48, 2234. doi:10.1016/j.neubiorev.2014.11.003Google Scholar
Clayson, P. E., & Larson, M. J. (2011). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49 (7), 19531961. doi:10.1016/j.neuropsychologia.2011.03.023Google Scholar
Colzato, L. S., Bajo, M. T., van den Wildenberg, W., Paolieri, D., Nieuwenhuis, S., La Heij, W., & Hommel, B. (2008). How does bilingualism improve executive control? A comparison of active and reactive inhibition mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34 (2), 302312. doi:10.1037/0278-7393.34.2.302Google Scholar
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N. (2009). On the bilingual advantage in conflict processing: Now you see it, now you don't. Cognition, 113 (2), 135149. doi:10.1016/j.cognition.2009.08.001Google Scholar
Costa, A., Miozzo, M., & Caramazza, A. (1999). Lexical selection in bilinguals: Do words in the bilingual's two lexicons compete for selection? Journal of Memory and Language, 41, 365397.Google Scholar
Costa, A., Pannunzi, M., Deco, G., & Pickering, M. J. (2017). Do bilinguals automatically activate their native language when they are not using it? Cognitive Science, 41, 16291644. doi:10.1111/cogs.12434Google Scholar
Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., Aso, T., Urayama, S., Fukuyama, H., Stockton, K., Usui, K., Green, D. W., & Price, C. J. (2006). Language control in the bilingual brain. Science, 312, 15371540.Google Scholar
Crone, E. A., Wendelken, C., Donohue, S. E., & Bunge, S. A. (2006). Neural evidence for dissociable components of task-switching. Cerebral Cortex, 16 (4), 475486. doi:10.1093/cercor/bhi127Google Scholar
Dale, A. M., & Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5, 329340.Google Scholar
Dambacher, M., & Hubner, R. (2015). Time pressure affects the efficiency of perceptual processing in decisions under conflict. Psychological Research, 79 (1), 8394. doi:10.1007/s00426-014-0542-zGoogle Scholar
De-Marchis, G. P. (2013). The use of key-press, voice and mouse devices in response time researches: A comparison in low conflict tasks. Computers in Human Behavior, 29 (5), 19601970. doi:10.1016/j.chb.2013.04.010Google Scholar
De Baene, W., Duyck, W., Brass, M., & Carreiras, M. (2015). Brain circuit for cognitive control is shared by task and language switching. Journal of Cognitive Neuroscience, 27 (9), 17521765. doi:10.1162/jocn_a_00817Google Scholar
de Bruin, A., Bak, T. H., & Della Sala, S. (2015). Examining the effects of active versus inactive bilingualism on executive control in a carefully matched non-immigrant sample. Journal of Memory and Language, 85, 1526. doi:10.1016/j.jml.2015.07.001Google Scholar
Duñabeitia, J. A., Hernández, J. A., Antón, E., Macizo, P., Estévez, A., Fuentes, L. J., & Carreiras, M. (2014). The inhibitory advantage in bilingual children revisited: Myth or reality? Experimental Psychology, 61, 234251.Google Scholar
Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective & Behavioral Neuroscience, 7 (4), 380390.Google Scholar
Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage, 24 (2), 539547. doi:10.1016/j.neuroimage.2004.09.007Google Scholar
Emmorey, K., Luk, G., Pyers, J. E., & Bialystok, E. (2008). The source of enhanced cognitive control in bilinguals: Evidence from bimodal bilinguals. Psychological Science, 19 (12), 12011206. doi:10.1111/j.1467-9280.2008.02224.xGoogle Scholar
Filippi, R., Leech, R., Thomas, M. S. C., Green, D. W., & Dick, F. (2012). A bilingual advantage in controlling language interference during sentence comprehension. Bilingualism: Language and Cognition, 15 (04), 858872. doi:10.1017/s1366728911000708Google Scholar
Garbin, G., Sanjuan, A., Forn, C., Bustamante, J. C., Rodriguez-Pujadas, A., Belloch, V., Hernandez, M., Costa, A., & Avila, C. (2010). Bridging language and attention: Brain basis of the impact of bilingualism on cognitive control. NeuroImage, 53 (4), 12721278. doi:10.1016/j.neuroimage.2010.05.078Google Scholar
Gathercole, V. C., Thomas, E. M., Kennedy, I., Prys, C., Young, N., Vinas Guasch, N., Roberts, E. J., Hughes, E. K., & Jones, L. (2014). Does language dominance affect cognitive performance in bilinguals? Lifespan evidence from preschoolers through older adults on card sorting, Simon, and metalinguistic tasks. Frontiers in Psychology, 5, 11. doi:10.3389/fpsyg.2014.00011Google Scholar
Gavazzi, C., Della Nave, R., Petralli, R., Rocca, M. A., Guerrini, L., Tessa, C., Diciottie, S., Filippi, M., Piacentini, S., & Mascalchi, M. (2007). Combining functional and structural brain magnetic resonance imaging in Huntington disease. Journal of Computer Assisted Tomography, 31 (4), 574580.Google Scholar
Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., & Smith, C. D. (2013). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. The Journal of Neuroscience, 33 (2), 387396. doi:10.1523/JNEUROSCI.3837-12.2013Google Scholar
Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More use almost always a means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. Journal of Memory and Language, 58 (3), 787814. doi:10.1016/j.jml.2007.07.001Google Scholar
Gollan, T. H., Schotter, E. R., Gomez, J., Murillo, M., & Rayner, K. (2014). Multiple levels of bilingual language control: Evidence from language intrusions in reading aloud. Psychological Science, 25 (2), 585595. doi:10.1177/0956797613512661Google Scholar
Gollan, T. H., Weissberger, G. H., Runnqvist, E., Montoya, R. I., & Cera, C. M. (2012). Self-ratings of spoken language dominance: A multi-lingual naming test (MINT) and preliminary norms for young and aging Spanish–English bilinguals. Bilingualism: Language and Cognition, 15 (3), 594615. doi:10.1017/S1366728911000332Google Scholar
Goodman, E., Huang, B., Schafer-Kalkhoff, T., & Adler, N. E. (2007). Perceived socioeconomic status: A new type of identity that influences adolescents' self-rated health. Journal of Adolescent Health, 41 (5), 479487. doi:10.1016/j.jadohealth.2007.05.020Google Scholar
Gracco, V. L., Tremblay, P., & Pike, B. (2005). Imaging speech production using fMRI. NeuroImage, 26 (1), 294301. doi:10.1016/j.neuroimage.2005.01.033Google Scholar
Grainger, J., & Frenck-Mestre, C. (1998). Masked priming by translation equivalents in proficient bilinguals. Language and Cognitive Processes, 13, 601623. doi: 10.1080/016909698386393Google Scholar
Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121 (4), 480506.Google Scholar
Green, D. W. (2011). Language control in different contexts: The behavioral ecology of bilingual speakers. Frontiers in Psychology, 2, 103. doi:10.3389/fpsyg.2011.00103Google Scholar
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25 (5), 515530. doi:10.1080/20445911.2013.796377Google Scholar
Guzzardo Tamargo, R. E., Valdés Kroff, J. R., & Dussias, P. E. (2016). Examining the relationship between comprehension and production processes in code-switched language. Journal of Memory and Language, 89, 138161. doi:10.1016/j.jml.2015.12.002Google Scholar
Hagen, K., Ehlis, A. C., Haeussinger, F. B., Heinzel, S., Dresler, T., Mueller, L. D., Herrmann, M. J., Fallgatter, A. J., & Metzger, F. G. (2014). Activation during the Trail Making Test measured with functional near-infrared spectroscopy in healthy elderly subjects. NeuroImage, 85, 583591. doi:10.1016/j.neuroimage.2013.09.014Google Scholar
Hernandez, A. E. (2009). Language switching in the bilingual brain: What's next? Brain and Language, 109 (2–3), 133140. doi:10.1016/j.bandl.2008.12.005Google Scholar
Hernandez, A. E., Greene, M. R., Vaughn, K. A., Francis, D. J., & Grigorenko, E. L. (2015). Beyond the bilingual advantage: The potential role of genes and environment on the development of cognitive control. Journal of Neurolinguistics, 35, 109119. doi:10.1016/j.jneuroling.2015.04.002Google Scholar
Hernandez, A. E., Martinez, A., & Kohnert, K. (2000). In search of the language switch: An fMRI study of picture naming in Spanish–English bilinguals. Brain and Language, 73 (3), 421431. doi:10.1006/brln.1999.2278Google Scholar
Hernández, M., Costa, A., Fuentes, L. J., Vivas, A. B., & Sebastián-Gallés, N. (2010). The impact of bilingualism on the executive control and orienting networks of attention. Bilingualism: Language and Cognition, 13 (03), 315325. doi:10.1017/s1366728909990010Google Scholar
Hernández, M., Costa, A., & Humphreys, G. W. (2012). Escaping capture: Bilingualism modulates distraction from working memory. Cognition, 122 (1), 3750. doi:10.1016/j.cognition.2011.08.002Google Scholar
Hilchey, M. D., & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic Bulletin & Review, 18 (4), 625658. doi:10.3758/s13423-011-0116-7Google Scholar
Hofweber, J., Marinis, T., & Treffers-Daller, J. (2016). Effects of dense code-switching on executive control. Linguistic Approaches to Bilingualism, 6 (5), 648668. doi:10.1075/lab.15052.hofGoogle Scholar
Ivanova, I., & Costa, A. (2008). Does bilingualism hamper lexical access in speech production? Acta Psychologica, 127 (2), 277288. doi:10.1016/j.actpsy.2007.06.003Google Scholar
Jackman, M. R. (1979). The subjective meaning of social class identification in the United States. Public Opinion Quarterly, 43 (4), 443462.Google Scholar
January, D., Trueswell, J. C., & Thompson-Schill, S. L. (2009). Co-localization of Stroop and syntactic ambiguity resolution in Broca's area: Implications for the neural basis of sentence processing. Journal of Cognitive Neuroscience, 21 (12), 24342444.Google Scholar
Kane, M. J., May, C. P., Hasher, L., Rahhal, T., & Stoltzfus, E. R. (1997). Dual mechanisms of negative priming. Journal of Experimental Psychology: Human Perception and Performance, 23 (3), 632650.Google Scholar
Kerns, J. G., Cohen, J. D., MacDonald, A. W. 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303 (5660), 10231026. doi:10.1126/science.1089910Google Scholar
Kim, C., Johnson, N. F., & Gold, B. T. (2014). Conflict adaptation in prefrontal cortex: Now you see it, now you don't. Cortex, 50, 7685. doi:10.1016/j.cortex.2013.08.011Google Scholar
Ko, C. H., Hsieh, T. J., Chen, C. Y., Yen, C. F., Chen, C. S., Yen, J. Y., Wang, P. W., & Liu, G. C. (2014). Altered brain activation during response inhibition and error processing in subjects with internet gaming disorder: A functional magnetic imaging study. European Archives of Psychiatry and Clinical Neuroscience, 264 (8), 661672. doi:10.1007/s00406-013-0483-3Google Scholar
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302 (5648), 11811185. doi:10.1126/science.1088545Google Scholar
Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25 (1), 621. doi:10.1002/hbm.20129Google Scholar
Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., Mazziotta, J. C., & Fox, P. T. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28 (11), 11941205. doi:10.1002/hbm.20345Google Scholar
Larson, M. J., Kaufman, D. A., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47 (3), 663670. doi:10.1016/j.neuropsychologia.2008.11.013Google Scholar
Luk, G., De Sa, E., & Bialystok, E. (2011). Is there a relation between onset age of bilingualism and enhancement of cognitive control? Bilingualism: Language and Cognition, 14 (4), 588595. doi:10.1017/s1366728911000010Google Scholar
Luk, G., Green, D. W., Abutalebi, J., & Grady, C. (2011). Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27 (10), 14791488. doi:10.1080/01690965.2011.613209Google Scholar
Marian, V., Blumenfeld, H. K., & Kaushanskaya, M. (2007). The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50, 940967.Google Scholar
Marian, V., & Spivey, M. J. (2003). Bilingual and monolingual processing of competing lexical items. Applied Psycholinguistics, 24, 173193. doi:10.1017/S0142716403000092Google Scholar
Martin-Rhee, M. M., & Bialystok, E. (2008). The development of two types of inhibitory control in monolingual and bilingual children. Bilingualism: Language and Cognition, 11 (01). doi:10.1017/s1366728907003227Google Scholar
May, C. P., Kane, M. J., & Hasher, L. (1995). Determinants of negative priming. Psychological Bulletin, 118 (1), 3554.Google Scholar
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6 (5), 450452. doi:10.1038/nn1051Google Scholar
Meuter, R. F. I., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40, 2540.Google Scholar
Milham, M. P., Banich, M. T., & Barad, V. (2003). Competition for priority in processing increases prefrontal cortex's involvement in top-down control: An event-related fMRI study of the Stroop task. Cognitive Brain Research, 17 (2), 212222. doi:10.1016/s0926-6410(03)00108-3Google Scholar
Milham, M. P., Banich, M. T., Webb, A., Barad, V., Cohen, N. J., Wszalek, T., & Kramer, A. F. (2001). The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Cognitive Brain Research, 12, 467473.Google Scholar
Moreno, E. M., Federmeier, K. D., & Kutas, M. (2002). Switching languages, switching palabras (words): An electrophysiological study of code switching. Brain and Language, 80 (2), 188207. doi:10.1006/brln.2001.2588Google Scholar
Morton, J. B., & Harper, S. N. (2007). What did Simon say? Revisiting the bilingual advantage. Developmental Science, 10 (6), 719726. doi:10.1111/j.1467-7687.2007.00623.xGoogle Scholar
Neill, W. T. (1977). Inhibitory and facilitatory processes in selective attention. Journal of Experimental Psychology: Human Perception and Performance, 3 (3), 444450.Google Scholar
Neumann, J., von Cramon, D. Y., & Lohmann, G. (2008). Model-based clustering of meta-analytic functional imaging data. Human Brain Mapping, 29 (2), 177192. doi:10.1002/hbm.20380Google Scholar
Nieuwenhuis, S., Stins, J. F., Posthuma, D., Polderman, T. J. C., Boomsma, D. I., & de Geus, E. J. (2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34 (6), 12601272.Google Scholar
Ostrove, J. M., & Long, S. M. (2007). Social class and belonging: Implications for college adjustment. The Review of Higher Education, 30 (4), 363389.Google Scholar
Paap, K. R., & Greenberg, Z. I. (2013). There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66 (2), 232258. doi:10.1016/j.cogpsych.2012.12.002Google Scholar
Paap, K. R., Johnson, H. A., & Sawi, O. M. (2014). Are bilingual advantages dependent upon specific tasks or specific bilingual experiences? Journal of Cognitive Psychology, 26 (6), 615639. doi:10.1080/20445911.2014.944914Google Scholar
Paap, K. R., & Liu, Y. (2014). Conflict resolution in sentence processing is the same for bilinguals and monolinguals: The role of confirmation bias in testing for bilingual advantages. Journal of Neurolinguistics, 27 (1), 5074. doi:10.1016/j.jneuroling.2013.09.002Google Scholar
Paap, K. R., Sawi, O. M., Dalibar, C., Darrow, J., & Johnson, H. A. (2014). The brain mechanisms underlying the cognitive benefits of bilingualism may be extraordinarily difficult to discover. AIMS Neuroscience, 1 (3), 245256. doi:10.3934/Neuroscience.2014.3.245Google Scholar
Pelham, S. D., & Abrams, L. (2014). Cognitive advantages and disadvantages in early and late bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40 (2), 313325. doi:10.1037/a0035224Google Scholar
Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafo, M. R., Nichols, T. E., Poline, J. B., Vul, E., & Yarkoni, T. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18 (2), 115126. doi:10.1038/nrn.2016.167Google Scholar
Prior, A., & Gollan, T. H. (2011). Good language-switchers are good task-switchers: Evidence from Spanish–English and Mandarin-English bilinguals. Journal of the International Neuropsychological Society, 17 (4), 682691. doi:10.1017/S1355617711000580Google Scholar
Prior, A., & Macwhinney, B. (2009). A bilingual advantage in task switching. Bilingualism: Language and Cognition, 13 (02), 253. doi:10.1017/s1366728909990526Google Scholar
Ridderinkhof, K. R., van den Wildenberg, W. P., Wijnen, J., & Burle, B. (2004). Response inhibition in conflict tasks is revealed in delta plots. In Posner, M. (Ed.), Cognitive neuroscience of attention (pp. 369377). New York, NY: Guilford Press.Google Scholar
Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C. R., Simmons, A., & Bullmore, E. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. The American Journal of Psychiatry, 156 (6), 891896.Google Scholar
Saidi, L. G., & Ansaldo, A. I. (2015). Can a second language help you in more ways than one? AIMS Neuroscience, 2 (1), 5257. doi:10.3934/Neuroscience.2015.1.52Google Scholar
Sandoval, T. C., Gollan, T. H., Ferreira, V. S., & Salmon, D. P. (2010). What causes the bilingual disadvantage in verbal fluency? The dual-task analogy. Bilingualism: Language and Cognition, 13 (02), 231. doi:10.1017/s1366728909990514Google Scholar
Schroeder, S. R., Marian, V., Shook, A., & Bartolotti, J. (2016). Bilingualism and musicianship enhance cognitive control. Neural Plasticity, 2016, 4058620. doi:10.1155/2016/4058620Google Scholar
Shadmehr, R., & Holcomb, H. H. (1999). Inhibitory control of competing motor memories. Experimental Brain Research, 126, 235251.Google Scholar
Spivey, M. J., & Marian, V. (1999). Cross talk between native and second languages: Partial activation of an irrelevant lexicon. Psychological Science, 10 (3), 281284.Google Scholar
Stins, J. F., Polderman, J. C., Boomsma, D. I., & de Geus, E. J. (2007). Conditional accuracy in response interference tasks: Evidence from the Eriksen flanker task and the spatial conflict task. Advances in Cognitive Psychology, 3 (3), 409417. doi:10.2478/v10053-008-0005-4Google Scholar
Stocco, A., & Prat, C. S. (2014). Bilingualism trains specific brain circuits involved in flexible rule selection and application. Brain and Language, 137, 5061. doi:10.1016/j.bandl.2014.07.005Google Scholar
Stocco, A., Yamasaki, B., Natalenko, R., & Prat, C. S. (2014). Bilingual brain training: A neurobiological framework of how bilingual experience improves executive function. International Journal of Bilingualism, 18 (1), 6792. doi:10.1177/1367006912456617Google Scholar
Tao, L., Marzecova, A., Taft, M., Asanowicz, D., & Wodniecka, Z. (2011). The efficiency of attentional networks in early and late bilinguals: The role of age of acquisition. Frontiers in Psychology, 2, 123. doi:10.3389/fpsyg.2011.00123Google Scholar
Teubner-Rhodes, S. E., Mishler, A., Corbett, R., Andreu, L., Sanz-Torrent, M., Trueswell, J. C., & Novick, J. M. (2016). The effects of bilingualism on conflict monitoring, cognitive control, and garden-path recovery. Cognition, 150, 213231. doi:10.1016/j.cognition.2016.02.011Google Scholar
Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94, 1479214797.Google Scholar
Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict adaptation effect: It's not just priming. Cognitive, Affective & Behavioral Neuroscience, 5 (4), 467472.Google Scholar
Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage, 14 (6), 13871401. doi:10.1006/nimg.2001.0935Google Scholar
Valdés Kroff, J. R. (2016). Mixed NPs in Spanish–English bilingual speech: Using a corpus-based approach to inform models of sentence processing. In Guzzardo Tamargo, R. E., Mazak, C. M., & Parafita Couto, M. C. (Eds.), Spanish–English code-switching in the Caribbean and the US (pp. 281300). Amsterdam, The Netherlands: John Benjamins.Google Scholar
Valdés Kroff, J. R., Guzzardo Tamargo, R. E., & Dussias, P. E. (in press). Experimental contributions of eye-tracking to the understanding of comprehension processes while hearing and reading code-switches. Linguistic Approaches to Bilingualism. doi:10.1075/lab.16011.valGoogle Scholar
Valian, V. (2014). Bilingualism and cognition. Bilingualism: Language and Cognition, 18 (01), 324. doi:10.1017/s1366728914000522Google Scholar
Vaughn, K. A., Ramos Nunez, A. I., Greene, M. R., Munson, B. A., Grigorenko, E. L., & Hernandez, A. E. (2016). Individual differences in the bilingual brain: The role of language background and DRD2 genotype in verbal and non-verbal cognitive control. Journal of Neurolinguistics, 40, 112127. doi:10.1016/j.jneuroling.2016.06.008Google Scholar
Verbruggen, F. (2016). Executive control of actions across time and space. Current Directions in Psychological Science, 25 (6), 399404. doi:10.1177/0963721416659254Google Scholar
Verreyt, N., Woumans, E., Vandelanotte, D., Szmalec, A., & Duyck, W. (2015). The influence of language-switching experience on the bilingual executive control advantage. Bilingualism: Language and Cognition, 19 (01), 181190. doi:10.1017/s1366728914000352Google Scholar
von Bastian, C. C., Souza, A. S., & Gade, M. (2016). No evidence for bilingual cognitive advantages: A test of four hypotheses. Journal of Experimental Psychology: General, 145 (2), 246258. doi:10.1037/xge0000120Google Scholar