Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T10:59:53.841Z Has data issue: false hasContentIssue false

Motor-visual neurons and action recognition in social interactions

Published online by Cambridge University Press:  29 April 2014

Stephan de la Rosa
Affiliation:
Department of Perception for Biological Cybernetics, Cognition, and Action, 72076 Tübingen, Germany. delarosa@tuebingen.mpg.dehttp://www.kyb.mpg.de/~delarosaheinrich.buelthoff@tuebingen.mpg.dehttp://www.kyb.mpg.de/~hhb
Heinrich H. Bülthoff
Affiliation:
Department of Perception for Biological Cybernetics, Cognition, and Action, 72076 Tübingen, Germany. delarosa@tuebingen.mpg.dehttp://www.kyb.mpg.de/~delarosaheinrich.buelthoff@tuebingen.mpg.dehttp://www.kyb.mpg.de/~hhb Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713, Korea

Abstract

Cook et al. suggest that motor-visual neurons originate from associative learning. This suggestion has interesting implications for the processing of socially relevant visual information in social interactions. Here, we discuss two aspects of the associative learning account that seem to have particular relevance for visual recognition of social information in social interactions – namely, context-specific and contingency based learning.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglioti, S. M., Cesari, P., Romani, M. & Urgesi, C. (2008) Action anticipation and motor resonance in elite basketball players. Nature Neuroscience 11(9):1109–16. doi:10.1038/nn.2182.Google Scholar
Barraclough, N. E. & Jellema, T. (2011) Visual aftereffects for walking actions reveal underlying neural mechanisms for action recognition. Psychological Science 22(1):8794. doi:10.1177/0956797610391910.Google Scholar
Barraclough, N. E., Keith, R. H., Xiao, D., Oram, M. W. & Perrett, D. I. (2009) Visual adaptation to goal-directed hand actions. Journal of Cognitive Neuroscience 21(9):1805–19.Google Scholar
Casile, A. & Giese, M. A. (2006) Nonvisual motor training influences biological motion perception. Current Biology 16(1):6974. doi:10.1016/j.cub.2005.10.071.CrossRefGoogle ScholarPubMed
de la Rosa, S., Streuber, S., Giese, M., Bülthoff, H. H. & Curio, C. (2014) Putting actions in context: Visual action adaptation aftereffects are modulated by social contexts. PloS One 9(1):e86502. doi:10.1371/journal.pone.0086502.CrossRefGoogle ScholarPubMed
Georgiou, I., Becchio, C., Glover, S. & Castiello, U. (2007) Different action patterns for cooperative and competitive behaviour. Cognition 102(3):415–33. doi:10.1016/j.cognition.2006.01.008.CrossRefGoogle ScholarPubMed
Hommel, B., Colzato, L. S. & Van den Wildenberg, W. P. M. (2009) How social are task representations? Psychological Science 20(7):794–98. doi:10.1111/j.1467-9280.2009.02367.x.Google Scholar
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C. & Rizzolatti, G. (2005) Grasping the intentions of others with one's own mirror neuron system. PLoS Biology 3(3):529–35; e79. doi:10.1371/journal.pbio.0030079.Google Scholar
Kaplan, J. T. & Iacoboni, M. (2006) Getting a grip on other minds: Mirror neurons, intention understanding, and cognitive empathy. Social Neuroscience 1(3–4):175–83. doi:10.1080/17470910600985605.Google Scholar
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J. & Frith, C. D. (2009) Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience 29(32):10153–59. doi:10.1523/JNEUROSCI.2668-09.2009.CrossRefGoogle ScholarPubMed
Streuber, S., Knoblich, G., Sebanz, N., Bülthoff, H. H. & de la Rosa, S. (2011) The effect of social context on the use of visual information. Experimental Brain Research 214(2):273–84. doi:10.1007/s00221-011-2830-9.Google Scholar