Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T22:57:40.275Z Has data issue: false hasContentIssue false

Mirror mechanism and dedicated circuits are the scaffold for mirroring processes

Published online by Cambridge University Press:  29 April 2014

Leonardo Fogassi*
Affiliation:
Department of Neuroscience, University of Parma, 43100 Parma, Italy. Leonardo.fogassi@unipr.ithttp://www.unipr.it/

Abstract

In the past decade many studies have demonstrated the existence of a mirror mechanism that matches the sensory representation of a biological stimulus with its somatomotor and visceromotor representation. This mechanism, likely phylogenetically very old, explains several types of mirroring behaviours, at different levels of complexity. The presence in primates of dedicated neuroanatomical pathways for specific sensorimotor integrations processes implies, at least in the primate lineage, a hard-wired mirror mechanism for social cognitive functions.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F. & Fogassi, L. (2010) Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex 20(6):1372–85.Google Scholar
Caggiano, V, Fogassi, L, Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A. & Casile, A. (2011) View-based encoding of actions in mirror neurons of area F5 in macaque premotor cortex. Current Biology 21(2):144–48.Google Scholar
Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P. & Casile, A. (2009) Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science 324(5925):403406.CrossRefGoogle ScholarPubMed
Catmur, C., Walsh, V. & Heyes, C. M. (2007) Sensorimotor learning configures the human mirror system. Current Biology 17(17):1527–31.Google Scholar
Cattaneo, L, Caruana, F., Jezzini, A. & Rizzolatti, G. (2009) Representation of goal and movements without overt motor behavior in the human motor cortex: A transcranial magnetic stimulation study. The Journal of Neuroscience 29(36):11134–38.Google Scholar
Cross, E. S., de Hamilton, A. F. & Grafton, S. T. (2006) Building a motor simulation de novo: Observation of dance by dancers. Neuroimage 31(3):1257–67.Google Scholar
Ertelt, D., Small, S., Solodkin, A., Dettmers, C., McNamara, A., Binkofski, F. & Buccino, G. (2007) Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36(Suppl. 2):T164–73.Google Scholar
Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. (1995) Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology 73(6):2608–11.Google Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G. & Fogassi, L. (2003) Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience 17(8):1703–14.Google Scholar
Fiorito, G. & Scotto, P. (1992) Observational learning in octopus vulgaris. Science 256:545–47.Google Scholar
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F. & Rizzolatti, G. (2005) Parietal lobe: From action organization to intention understanding. Science 308(5722):662–67.Google Scholar
Lui, F., Buccino, G., Duzzi, D., Benuzzi, F., Crisi, G., Baraldi, P., Nichelli, P., Porro, C. A. & Rizzolatti, G. (2008) Neural substrates for observing and imagining non-object-directed actions. Social Neuroscience 3(3–4):261–75.Google Scholar
Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W., Rizzolatti, G. & Orban, G. A. (2011) Action observation circuits in the macaque monkey cortex. Journal of Neuroscience 31(10):3743–56. doi: 10.1523/JNEUROSCI.4803-10.2011.Google Scholar
Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., Chitty, A. K., Hietanen, J. K. & Ortega, J. E. (1989) Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology 146:87113.Google Scholar
Prather, J. F., Peters, S., Nowicki, S. & Mooney, R. (2008) Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451(7176):305–10.Google Scholar
Range, F., Viranyi, Z. & Huber, L. (2007) Selective imitation in domestic dogs. Current Biology 17:868–72.Google Scholar
Rizzolatti, G., Fogassi, L. & Gallese, V. (2004) Cortical mechanism subserving object grasping, action understanding and imitation. In: The cognitive neurosciences, 3rd edition, ed. Gazzaniga, M. S., A Bradford Book/MIT Press.Google Scholar
Rizzolatti, G. & Luppino, G. (2001) The cortical motor system. Neuron 31:889901.Google Scholar
Rizzolatti, G. & Matelli, M. (2003) Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research 153:146–57.CrossRefGoogle ScholarPubMed
Zentall, T. R. & Levine, J. M. (1972) Observational learning and social facilitation in the rat. Science 178:1220–21.Google Scholar