Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T11:23:39.124Z Has data issue: false hasContentIssue false

Communication consistency, completeness, and complexity of digital ideography in trustworthy mobile extended reality

Published online by Cambridge University Press:  02 October 2023

Kevin B. Clark*
Affiliation:
Cures Within Reach, Chicago, IL, USA kbclarkphd@yahoo.com www.linkedin.com/pub/kevin-clark/58/67/19a; https://access-ci.org Felidae Conservation Fund, Mill Valley, CA, USA Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA, USA Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA, USA Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA, USA Frontier Development Lab, NASA Ames Research Center, Mountain View, CA, USA SETI Institute, Mountain View, CA, USA Peace Innovation Institute, Stanford University, Palo Alto, CA, USA and The Hague, Netherlands Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, Berlin, Germany Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY, USA

Abstract

Communication barriers long-associated with ideographs, including combinatorial grapholinguistic complexity, computational encoding–decoding complexity, and technological rendering and deployment, become trivialized through advancements in interoperable smart mobile digital devices. Such technologies impart unprecedented extended-reality user hazards only mitigated by unprecedented colloquial and bureaucratic societal norms. Digital age norms thus influence natural ideographic language origins and evolution in ways novel to human history.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clark, K. B. (2012). A statistical mechanics definition of insight. In Floares, A. G. (Ed.), Computational intelligence (pp. 139162). Nova Science. ISBN 978-1-62081-901-2.Google Scholar
Clark, K. B. (2014). Evolution of affective and linguistic disambiguation under social eavesdropping pressures. Behavioral and Brain Sciences, 37(6), 551552.CrossRefGoogle ScholarPubMed
Clark, K. B. (2015). Insight and analysis problem solving in microbes to machines. Progress in Biophysics and Molecular Biology, 119, 183193.CrossRefGoogle ScholarPubMed
Clark, K. B. (2017a). The humanness of artificial nonnormative personalities. Behavioral and Brain Sciences, 40, e259.CrossRefGoogle ScholarPubMed
Clark, K. B. (2017b). Dialect structural priming in endangered language evolution, devolution, and protection. Proceedings of the Royal Society B: Biological Sciences. Retrieved from https://royalsocietypublishing.org/action/downloadSupplement?doi=10.1098%2Frspb.2014.1574&file=royprsb_el.pdf&Google Scholar
Clark, K. B. (2018). Natural chunk-and-pass language processing: Just another joint source-channel coding model? Communicative & Integrative Biology, e1445899.Google ScholarPubMed
Clark, K. B. (2020). Digital life, a theory of minds, and mapping human and machine cultural universals. Behavioral and Brain Sciences, 43, e98.CrossRefGoogle ScholarPubMed
Clark, K. B., & Hassert, D. L. (2013). Undecidability and opacity of metacognition in animals and humans. Frontiers in Psychology, 4, 171.CrossRefGoogle ScholarPubMed
Damerow, P. (2006). The origins of writing as a problem of historical epistemology. Cuneiform Digital Library Journal, 1, 110.Google Scholar
De Buyser, E., De Coninck, E., Dhoedt, B., & Simoens, P. (2016). Exploring the potential of combining smart glasses and consumer-grade EEG/EMG headsets for controlling IoT appliances in the smart home. 2nd IET International Conference on Technologies for Active and Assisted Living, pp. 1–6.CrossRefGoogle Scholar
Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical results. Academy of Management Annals, 14(2), 627660.CrossRefGoogle Scholar
Gödel, K. (1931). Über formal unentscheidbare Säze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173198.CrossRefGoogle Scholar
Kreisel, G. (1967). Mathematical logic: What has it done for the philosophy of mathematics? In Schoeman, R. (Ed.), Bertrand Russell philosopher of the century (pp. 201272). George Allen & Unwin.Google Scholar
Lee, J. H., Kim, H., Hwang, J.-Y., Chung, J., Jang, T.-M., Seo, D. G., … Hwang, S.-W. (2020). 3D Printed, customizable and multi-functional smart electronic eyeglasses (E-glasses) for wearable healthcare systems and human-machine interfaces. ACS Applied Materials & Interfaces, 12, 2142421432.CrossRefGoogle Scholar
Miotto, R., Danieletto, M., Scelza, J. R., Kidd, B. A., & Dudley, J. T. (2018). Reflecting health: Smart mirrors for personalized medicine. NPJ Digital Medicine, 1, 62.CrossRefGoogle ScholarPubMed
National Academies of Sciences, Engineering, and Medicine. (2021). Human–AI teaming: State of the art and research needs. National Academies Press.Google Scholar
Roff, H. (2020). AI deception: When your artificial intelligence learns to lie. IEEE Spectrum. Retrieved from https://spectrum.ieee.org/ai-deception-when-your-ai-learns-to-lie#toggle-gdprGoogle Scholar
Schmandt-Besserat, D. (2007). When writing met art: From symbol to story. University of Texas Press.CrossRefGoogle Scholar