Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-14T23:03:50.163Z Has data issue: false hasContentIssue false

Optimal insurance with counterparty and additive background risk

Published online by Cambridge University Press:  02 February 2024

Yanhong Chen*
Affiliation:
College of Finance and Statistics, Hunan University, Changsha 410082, P.R. China

Abstract

In this paper, we explore how to design the optimal insurance contracts when the insured faces insurable, counterparty, and additive background risk simultaneously. The target is to minimize the mean-variance of the insured’s loss. By utilizing the calculus of variations, an implicit characterization of the optimal ceded loss function is given. An explicit structure of the optimal ceded loss function is also provided by making full use of its implicit characterization. We further derive a much simpler solution when these three kinds of risk have some special dependence structures. Finally, we give a numerical example to illustrate our results.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asimit, A.V., Badescu, A.M. and Cheung, K.C. (2013) Optimal reinsurance in the presence of counterparty default risk. Insurance: Mathematics and Economics, 53(3), 690697.Google Scholar
Asimit, A.V., Bignozzi, V., Cheung, K.C., Hu, J. and Kim, E.S. (2017) Robust and Pareto optimality of insurance contracts. European Journal of Operational Research, 262(2), 720732.CrossRefGoogle Scholar
Bernard, C. and Ludkovski, M. (2012) Impact of counterparty risk on the reinsurance market. North American Actuarial Journal, 16(1), 87111.CrossRefGoogle Scholar
Boonen, T.J. and Jiang, W.J. (2022) Mean-variance insurance design with counterparty risk and incentive compatibility. ASTIN Bulletin, 52(2), 645667.CrossRefGoogle Scholar
Boonen, T.J. and Jiang, W.J. (2023) Pareto-optimal reinsurance with default risk and solvency regulation. Probability in the Engineering and Informational Sciences, 37(2), 518545.CrossRefGoogle Scholar
Borch, K. (1960) An attempt to determine the optimum amount of stop loss reinsurance. Transactions of the 16th International Congress of Actuaries, Vol. 1, pp. 597610.Google Scholar
Cai, J., Lemieux, C. and Liu, F. (2014) Optimal reinsurance with regulatory initial capital and default risk. Insurance: Mathematics and Economics, 57, 1324.Google Scholar
Cai, J., Tan, K., Weng, C. and Zhang, Y. (2008) Optimal reinsurance under VaR and CTE risk measures. Insurance: Mathematics and Economics, 43(1), 185196.Google Scholar
Chen, Y.H. (2021) Optimal reinsurance form the viewpoints of both an insurer and a reinsurer under the CVaR risk measure and Vajda condition. ASTIN Bulletin, 51(2), 631659.CrossRefGoogle Scholar
Chi, Y.C. and Tan, K.S. (2021) Optimal incentive-compatible insurance with background risk. ASTIN Bulletin, 51(2), 661688.CrossRefGoogle Scholar
Chi, Y.C. and Wei, W. (2020) Optimal insurance with background risk: An analysis of general dependence structures. Finance and Stochastics, 24, 903937.CrossRefGoogle Scholar
Cummins, J.D. and Mahul, O. (2003) Optimal insurance with divergent beliefs about insurer total default risk. Journal of Risk and Uncertainty, 27(2), 121138.CrossRefGoogle Scholar
Doherty, N.A. and Schlesinger, H. (1983) The optimal deductible for an insurance policy when initial wealth is random. The Journal of Business, 56, 555565.CrossRefGoogle Scholar
Filipovic, D., Kremslehner, R. and Muermann, A. (2015) Optimal investment and premium policies under risk shifting and solvency regulation. Journal of Risk and Insurance, 82(2), 261288.CrossRefGoogle Scholar
Gollier, C. (1996) Optimum insurance of approximate losses. Journal of Risk and Insurance, 63(3), 369380.CrossRefGoogle Scholar
Hong, S.K., Lew, K.O., Macminn, R. and Brockett, P. (2011) Mossin’s theorem given random initial wealth. The Journal of Risk and Insurance, 78(2), 309324.CrossRefGoogle Scholar
Li, C. and Li, X. (2018) On the optimal risk sharing in reinsurance with random recovery rate. Risks, 6(4), 114.CrossRefGoogle Scholar
Lu, Z.Y., Liu, L.P., Zhang, J.Y. and Meng, L.L. (2012) Optimal insurance under multiple sources of risk with positive dependence. Insurance: Mathematics and Economics, 51, 462471.Google Scholar
Lu, Z.Y., Meng, S.W., Liu, L.P. and Han, Z.Q. (2018) Optimal insurance design under background risk with dependence. Insurance: Mathematics and Economics, 80, 1528.Google Scholar
Mayers, D. and Smith, C.W. Jr (1983) The interdependence of individual portfolio decisions and the demand for insurance. Journal of Political Economy, 91, 304311.CrossRefGoogle Scholar
Meng, H., Wei, P.Y., Zhang, W.L. and Zhuang, S.C. (2022) Optimal dynamic reinsurance under heterogeneous beliefs and CARA utility. SIAM Journal on Financial Mathematics, 13(3), 903943.CrossRefGoogle Scholar
Tan, K.S., Wei, P., Wei, W. and Zhuang, S.C. (2020) Optimal dynamic reinsurance policies under a generalized Dennebergs absolute deviation principle. European Journal of Operational Research, 282(1), 345362.CrossRefGoogle Scholar