Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T18:04:05.843Z Has data issue: false hasContentIssue false

On the Upcrossing and Downcrossing Probabilities of a Dual Risk Model With Phase-Type Gains

Published online by Cambridge University Press:  09 August 2013

Andrew C.Y. Ng*
Affiliation:
Department of Finance, The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

In this paper, we consider the dual of the classical Cramér-Lundberg model when gains follow a phase-type distribution. By using the property of phase-type distribution, two pairs of upcrossing and downcrossing barrier probabilities are derived. Explicit formulas for the expected total discounted dividends until ruin and the Laplace transform of the time of ruin under a variety of dividend strategies can then be obtained without the use of Laplace transforms.

Type
Research Article
Copyright
Copyright © International Actuarial Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecher, H. and Thonhauser, S. (2009) Optimality Results for Dividend Problems in Insurance. RACSAM Revista de la Real Academia de Ciencias; Serie A, Matemáticas, 103(2), 295320.Google Scholar
Asmussen, S. (2000) Ruin Probabilities. Singapore: World Scientific.Google Scholar
Asmussen, S., Nerman, O., and Olsson, M. (1996) Fitting Phase-type Distribution via the EM Algorithm. Scandinavian Journal of Statistics, 30, 365372.Google Scholar
Asmussen, S. and Perry, D. (1992) On Cycle Maxima, First Passage Problems and Extreme Value Theory for Queues, Stochastic Models, 8, 421458.CrossRefGoogle Scholar
Avanzi, B. (2009) Strategies for Dividend Distribution: A Review, North American Actuarial Journal, 13( 2), 217251.Google Scholar
Avanzi, B. and Gerber, H.U. (2008) Optimal Dividends in the Dual Model with Diffusion, ASTIN Bulletin 38(2): 653667.CrossRefGoogle Scholar
Avanzi, B., Gerber, H.U. and Shiu, E.S.W. (2007) Optimal Dividends in the Dual Model, Insurance: Mathematics and Economics, 41(1), 111123.Google Scholar
Bayraktar, E. and Egami, M. (2008) Optimizing Venture Capital Investment in a Jump Diffusion Model, Mathematical Methods of Operations Research, 67(1), 2142.Google Scholar
Bühlmann, H. (1970) Mathematical Methods in Risk Theory. New York: Springer-Verlag.Google Scholar
Cramér, H. (1955) Collective Risk Theory: A Survey of the Theory from the Point of View of the Theory of Stochastic Process. Stockholm: Ab Nordiska Bokhandeln.Google Scholar
de Finetti, B. (1957) Su Un'impostazione Alternativa della Teoria Collettiva del Rischio, Transactions of the XVth International Congress of Actuaries 2, 433443.Google Scholar
Gerber, H.U. (1969) Entscheidungskriterien für den Zusammengesetzten Poisson-Prozess, Bulletin de l'Association Suisse des Actuaires, 1969(2), 185228.Google Scholar
Gerber, H.U. (1972) Games of Economic Survival with Discrete- and Continuous-Income Processes, Operational Research, 20(1), 3745.Google Scholar
Gerber, H.U., Lin, X.S. and Yang, H. (2006) A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier, ASTIN Bulletin, 36(2), 489503.CrossRefGoogle Scholar
Gerber, H.U. and Shiu, E.S.W. (1998) On the Time Value of Ruin, North American Actuarial Journal, 2(1), 4872.Google Scholar
Gerber, H.U. and Smith, N. (2008) Optimal Dividends with Incomplete Information in the Dual Model, Insurance: Mathematics and Economics, 43(2): 227233.Google Scholar
Graham, A. (1981) Kronecker Products and Matrix Calculus with Applications, Chichester: Ellis Horwood.Google Scholar
Loeffen, R.L. (2008) On Optimality of the Barrier Strategy in de Finetti's Dividend Problem for Spectrally Negative Lévy Processes, 18(5), 16691680.Google Scholar
Ng, A.C.Y. (2009) On a Dual Model with a Dividend Threshold, Insurance: Mathematics and Economics, 44(2), 315324.Google Scholar
Ng, A.C.Y. and Yang, H. (2006) On the Joint Distribution of Surplus Before and After Ruin Under a Markovian Regime Switching Model, Stochastic Processes and Their Applications, 116, 244266.CrossRefGoogle Scholar
Seal, H.L. (1969) Stochastic Theory of a Risk Business. New York: Wiley.Google Scholar
Takács, L. (1967) Combinatorial Methods in the Theory of Stochastic Processes. New York: Wiley.Google Scholar
Zhu, J. and Yang, H. (2008) Ruin Probabilities of a Dual Markov-Modulated Risk Model, Communications in Statistics – Theory and Methods, 37, 32983307.Google Scholar