Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T17:37:20.493Z Has data issue: false hasContentIssue false

Selective updating of sentences: Introducing a new measure of verbal working memory

Published online by Cambridge University Press:  17 July 2017

DANIEL FELLMAN*
Affiliation:
Abo Akademi University
ANNA SOVERI
Affiliation:
Abo Akademi University
CHARLOTTE VIKTORSSON
Affiliation:
Abo Akademi University
SARAH HAGA
Affiliation:
Abo Akademi University
JOHANNES NYLUND
Affiliation:
Abo Akademi University
SANNA JOHANSSON
Affiliation:
Abo Akademi University
JAKOB EDMAN
Affiliation:
Abo Akademi University
FELIX VON RENTELN
Affiliation:
Abo Akademi University
MATTI LAINE
Affiliation:
Abo Akademi University
*
ADDRESS FOR CORRESPONDENCE Daniel Fellman, Department of Psychology, Abo Akademi University, Fabriksgatan 2, FIN-20500 Turku, Finland. E-mail: dfellman@abo.fi

Abstract

Working memory (WM) is one of the most studied cognitive constructs in psychology, because of its relevance to human performance, including language processing. When measuring verbal WM for sentences, the reading span task is the most widely used WM measure for this purpose. However, comparable sentence-level updating tasks are missing. Hence, we sought to develop a WM updating task, which we termed the selective updating of sentences (SUS) task, which taps the ability to constantly update sentences. In two experiments with Finnish-speaking young adults, we examined the internal consistency and concurrent validity of the SUS task. It exhibited adequate internal consistency and correlated positively with well-established working memory measures. Moreover, the SUS task also showed positive correlations with verbal episodic memory tasks employing sentences and paragraphs. These results indicate that the SUS task is a promising new task for psycholinguistic studies addressing verbal WM updating.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M., Badecker, W., & Osterhout, L. (2003). Morphological analysis in sentence processing: An ERP study. Language and Cognitive Processes, 18, 405430. doi:10.1080/01690960244000054 Google Scholar
Archibald, L. M., & Harder Griebeling, K. (2015). Rethinking the connection between working memory and language impairment. International Journal of Language & Communication Disorders, 51, 252264. doi:10.1111/1460-6984.12202 Google Scholar
Archibald, L. M., & Joanisse, M. F. (2009). On the sensitivity and specificity of nonword repetition and sentence recall to language and memory impairments in children. Journal of Speech, Language, and Hearing Research, 52, 899914. doi:10.1044/1092-4388(2009/08-0099) Google Scholar
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417423. doi:10.1016/S1364-6613(00)01538-2 Google Scholar
Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36, 189208. doi:10.1016/S0021-9924(03)00019-4 CrossRefGoogle ScholarPubMed
Baddeley, A., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 4789. doi:10.1016/S0079-7421(08)60452-1 Google Scholar
Benton, A., & Hamsher, K. (Eds.). (1978). Multilingual aphasia examination (rev.) Iowa City, IA: University of Iowa Hospitals, Department of Neurology.Google Scholar
Brener, R. (1940). An experimental investigation of memory span. Journal of Experimental Psychology, 26, 467482. doi:10.1037/h0061096 CrossRefGoogle Scholar
Carretti, B., Borella, E., Cornoldi, C., & De Beni, R. (2009). Role of working memory in explaining the performance of individuals with specific reading comprehension difficulties: A meta-analysis. Learning and Individual Differences, 19, 246251. doi:10.1016/j.lindif.2008.10.002 Google Scholar
Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user's guide. Psychonomic Bulletin & Review, 12, 769786. doi:10.3758/BF03196772 Google Scholar
Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman & Hall.Google Scholar
Crump, M. J., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon's Mechanical Turk as a tool for experimental behavioral research. PlOS ONE, 8, e57410. doi:10.1371/journal.pone.0057410 Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450466. doi:10.1016/S0022-5371(80)90312-6 Google Scholar
Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3, 422433. doi:10.3758/BF03214546 Google Scholar
Earles, J. L., & Kersten, A. W. (2000). Adult age differences in memory for verbs and nouns. Aging, Neuropsychology, and Cognition, 7, 130139. doi:10.1076/1382-5585(200006)7:2;1-U;FT130 CrossRefGoogle Scholar
Ecker, U. K., Lewandowsky, S., & Oberauer, K. (2014). Removal of information from working memory: A specific updating process. Journal of Memory and Language, 74, 7790. doi:10.1016/j.jml.2013.09.003 Google Scholar
Ecker, U. K., Lewandowsky, S., Oberauer, K., & Chee, A. E. (2010). The components of working memory updating: An experimental decomposition and individual differences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 170189. doi:10.1037/a0017891 Google Scholar
Ecker, U. K., Oberauer, K., & Lewandowsky, S. (2014). Working memory updating involves item-specific removal. Journal of Memory and Language, 74, 115. doi:10.1016/j.jml.2014.03.006 Google Scholar
Enochson, K., & Culbertson, J. (2015). Collecting psycholinguistic response time data using Amazon Mechanical Turk. PLOS ONE, 10, e0116946. doi:10.1371/journal.pone.0116946 Google Scholar
Everitt, B. (2002). The Cambridge dictionary of statistics. Cambridge: Cambridge University Press.Google Scholar
Feitosa, J., Joseph, D. L., & Newman, D. A. (2015). Crowdsourcing and personality measurement equivalence: A warning about countries whose primary language is not English. Personality and Individual Differences, 75, 4752. doi:10.1016/j.paid.2014.11.017 Google Scholar
Foster, J. L., Shipstead, Z., Harrison, T. L., Hicks, K. L., Redick, T. S., & Engle, R. W. (2015). Shortened complex span tasks can reliably measure working memory capacity. Memory & Cognition, 43, 226236. doi:10.3758/s13421-014-0461-7 Google Scholar
Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172179. doi:10.1111/j.1467-9280.2006.01681.x Google Scholar
Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. B. (2012). Is the web as good as the lab? Comparable performance from web and lab in cognitive/perceptual experiments. Psychonomic Bulletin & Review, 19, 847857. doi:10.3758/s13423-012-0296-9 Google Scholar
Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In Marantz, A., Miyashita, Y., & O'Neil, W. (Eds.), Image, language, brain (pp. 95126). Cambridge, MA: MIT Press.Google Scholar
Gonthier, C., Thomassin, N., & Roulin, J. (2016). The composite complex span: French validation of a short working memory task. Behavior Research Methods, 48, 233242. doi:10.3758/s13428-015-0566-3 Google Scholar
Hambrick, D. Z., Oswald, F. L., Darowski, E. S., Rench, T. A., & Brou, R. (2010). Predictors of multitasking performance in a synthetic work paradigm. Applied Cognitive Psychology, 24, 11491167. doi:10.1002/acp.1624 Google Scholar
Holmes, J. (2011). Baby brain: Training executive control in infancy. Current Biology, 21, R684R685. doi:10.1016/j.cub.2011.08.026 Google Scholar
Holmes, J., & Gathercole, S. E. (2014). Taking working memory training from the laboratory into schools. Educational Psychology, 34, 440450. doi:10.1080/01443410.2013.797338 Google Scholar
Humphries, C., Binder, J., Medler, D., & Liebenthal, E. (2006). Syntactic and semantic modulation of neural activity during auditory sentence comprehension. Journal of Cognitive Neuroscience, 18, 665679. doi:10.1162/jocn.2006.18.4.665 CrossRefGoogle ScholarPubMed
Huttenlocher, J., & Lui, F. (1979). The semantic organization of some simple nouns and verbs. Journal of Verbal Learning and Verbal Behavior, 18, 141162. doi:10.1016/S0022-5371(79)90091-4 Google Scholar
Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007). For whom the mind wanders, and when: An experience-sampling study of working memory and executive control in daily life. Psychological Science, 18, 614621. doi:10.1111/j.1467-9280.2007.01948.x Google Scholar
Kane, M. J., Conway, A. R., Miura, T. K., & Colflesh, G. J. (2007). Working memory, attention control, and the N-back task: A question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 615622. doi:10.1037/0278-7393.33.3.615 Google Scholar
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189217. doi:10.1037/0096-3445.133.2.189 Google Scholar
Kessler, Y., & Meiran, N. (2006). All updateable objects in working memory are updated whenever any of them are modified: Evidence from the memory updating paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 570585. doi:10.1037/0278-7393.32.3.570 Google ScholarPubMed
Kessler, Y., & Meiran, N. (2008). Two dissociable updating processes in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 13391348. doi:10.1037/a0013078 Google Scholar
Kessler, Y., & Oberauer, K. (2015). Forward scanning in verbal working memory updating. Psychonomic Bulletin & Review, 22, 17701776. doi:10.3758/s13423-015-0853-0 Google Scholar
Klem, M., Melby-Lervåg, M., Hagtvet, B., Lyster, S. H., Gustafsson, J., & Hulme, C. (2015). Sentence repetition is a measure of children's language skills rather than working memory limitations. Developmental Science, 18, 146154. doi:10.1111/desc.12202 Google Scholar
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317324. doi:10.1016/j.tics.2010.05.002 Google Scholar
Lechuga, M. T., Pelegrina, S., Pelaez, J. L., Martin-Puga, M. E., & Justicia, M. J. (2016). Working memory updating as a predictor of academic attainment. Educational Psychology, 36, 675690. doi:10.1080/01443410.2014.950193 Google Scholar
Levy, R. P., & Keller, F. (2013). Expectation and locality effects in German verb-final structures. Journal of Memory and Language, 68, 199222. doi:10.1016/j.jml.2012.02.005 Google Scholar
Lewis, R., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory retrieval. Cognitive Science, 29, 375419. doi:10.1207/s15516709cog0000_25 Google Scholar
Lewis, R., Vasishth, S., & Van Dyke, J. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10, 447454. doi:10.1016/j.tics.2006.08.007 Google Scholar
Linnman, C., Carlbring, P., Åhman, Å, Andersson, H., & Andersson, G. (2006). The Stroop effect on the internet. Computers in Human Behavior, 22, 448455. doi:10.1016/j.chb.2004.09.010 Google Scholar
MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996). Psychological Review, 109, 3554. doi:10.1037//0033-295X.109.1.35 Google Scholar
Mason, R., & Just, M. (2007). Lexical ambiguity in sentence comprehension. Brain Research, 1146, 115127. doi:10.1016/j.brainres.2007.02.076 Google Scholar
McCauley, S. M., & Christiansen, M. H. (2015). Individual differences in chunking ability predict on-line sentence processing. In Noelle, D. C., Matlock, T., Dale, R., Jennings, C., Warlaumont, A., Maglio, P. P., & Yoshimi, J. (Eds.), 37th Annual Meeting of the Cognitive Science Society (CogSci 2015): Mind, technology, and society (pp. 15531558). Austin, TX: Cognitive Science Society.Google Scholar
McElree, B., Foraker, S., & Dyer, L. (2003). Memory structures that subserve sentence comprehension. Journal of Memory and Language, 48, 6791. doi:10.1016/S0749-596X(02)00515-6 Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. doi:10.1006/cogp.1999.0734 CrossRefGoogle ScholarPubMed
Miyake, A., Just, M., & Carpenter, P. (1994). Working memory constraints on the resolution of lexical ambiguity: Maintaining multiple interpretations in neutral contexts. Journal of Memory and Language, 33, 175202. doi:10.1006/jmla.1994.1009 Google Scholar
Moreau, D., & Conway, A. R. A. (2014). The case for an ecological approach to cognitive training. Trends in Cognitive Sciences, 18, 334336. doi:10.1016/j.tics.2014.03.009 Google Scholar
Morris, N., & Jones, D. M. (1990). Memory updating in working memory: The role of the central executive. British Journal of Psychology, 81, 111121. doi:10.1111/j.2044-8295.1990.tb02349.x Google Scholar
Murty, V. P., Sambataro, F., Radulescu, E., Altamura, M., Iudicello, J., Zoltick, B., . . . Mattay, V. S. (2011). Selective updating of working memory content modulates meso-cortico-striatal activity. NeuroImage, 57, 12641272. doi:10.1016/j.neuroimage.2011.05.006 Google Scholar
Nicenboim, B., Vasishth, S., Gattei, C., Sigman, M., & Kliegl, R. (2015). Working memory differences in long-distance dependency resolution. Frontiers in Psychology, 6, 312. doi:10.3389/fpsyg.2015.00312 Google Scholar
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411421. doi:10.1037/0278-7393.28.3.411 Google ScholarPubMed
Oberauer, K., Süß, H., Wilhelm, O., & Wittman, W. W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167193. doi:10.1016/S0160-2896(02)00115-0 Google Scholar
Oberauer, K., Weidenfeld, A., & Hörnig, R. (2006). Working memory capacity and the construction of spatial mental models in comprehension and deductive reasoning. Quarterly Journal of Experimental Psychology, 59, 426447. doi:10.1080/17470210500151717 CrossRefGoogle ScholarPubMed
Oswald, F. L., McAbee, S. T., Redick, T. S., & Hambrick, D. Z. (2015). The development of a short domain-general measure of working memory capacity. Behavior Research Methods, 47, 13431355. doi:10.3758/s13428-014-0543-2 Google Scholar
Palladino, P., Cornoldi, C., De Beni, R., & Pazzaglia, F. (2001). Working memory and updating processes in reading comprehension. Memory & Cognition, 29, 344354. doi:10.3758/BF03194929 Google Scholar
Payne, B. R., Grison, S., Gao, X., Christianson, K., Morrow, D. G., & Stine-Morrow, E. A. (2014). Aging and individual differences in binding during sentence understanding: Evidence from temporary and global syntactic attachment ambiguities. Cognition, 130, 157173. doi:10. 1016/j.cognition.2013.10.005 Google Scholar
Poll, G. H., Miller, C. A., & van Hell, J. G. (2016). Sentence repetition accuracy in adults with developmental language impairment: Interactions of participant capacities and sentence structures. Journal of Speech, Language, and Hearing Research, 59, 302316. doi:10.1044/2015_JSLHR-L-15-002 Google Scholar
Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14, 191201. doi:10.3758/BF03197692 Google Scholar
Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth, N., Kane, M. J., & Engle, R. W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28, 164171. doi:10.1027/1015-5759/a000123 Google Scholar
Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures of working memory: A meta-analysis. Psychonomic Bulletin & Review, 20, 11021113. doi:10.3758/s13423-013-0453-9 Google Scholar
Riches, N. G., Loucas, T., Baird, G., Charman, T., & Simonoff, E. (2010). Sentence repetition in adolescents with specific language impairments and autism: An investigation of complex syntax. International Journal of Language & Communication Disorders, 45, 4760. doi:10.3109/13682820802647676 Google Scholar
Ricketts, J., Sperring, R., & Nation, K. (2014). Educational attainment in poor comprehenders. Frontiers in Psychology, 5, 445. doi:10.3389/fpsyg.2014.00445 Google Scholar
Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 13011308. doi:10.1177/0956797612466268 Google Scholar
Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & Cognition, 34, 344355. doi:10.3758/BF03193412 Google Scholar
Schmiedek, F., Hildebrandt, A., Lövdén, M., Wilhelm, O., & Lindenberger, U. (2009). Complex span versus updating tasks of working memory: The gap is not that deep. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 10891096. doi:10.1037/a0015730 Google Scholar
Schmiedek, F., Lövdén, M., & Lindenberger, U. (2014). A task is a task is a task: Putting complex span, n-back, and other working memory indicators in psychometric context. Frontiers in Psychology, 5, 1475. doi:10.3389/fpsyg.2014.01475 Google Scholar
Shipstead, Z., Redick, T., & Engle, R. (2010). Does working memory training generalize? Psychologica Belgica, 50, 245276. doi:10.5334/pb-50-3-4-245 Google Scholar
Smith, S. M., Roster, C. A., Golden, L. L., & Albaum, G. S. (2016). A multi-group analysis of online survey respondent data quality: Comparing a regular USA consumer panel to MTurk samples. Journal of Business Research, 69, 31393148. doi:10.1016/j.jbusres.2015.12.002 Google Scholar
Solopchuk, O., Alamia, A., Olivier, E., & Zenon, A. (2016). Chunking improves symbolic sequence processing and relies on working memory gating mechanisms. Learning & Memory, 23, 108112. doi:10.1101/lm.041277.115 Google Scholar
Strauss, E., Sherman, E. M., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. Oxford: Oxford University Press.Google Scholar
Süß, H., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—And a little bit more. Intelligence, 30, 261288. doi:10.1016/S0160-2896(01)00100-3 Google Scholar
Tabachnick, B. G., & Fidell, L. S. (1996). Using multivariate statistics. New York: HarperCollins.Google Scholar
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson/Allyn & Bacon.Google Scholar
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127154. doi:10.1016/0749-596X(89)90040-5 Google Scholar
Unsworth, N. (2010). On the division of working memory and long-term memory and their relation to intelligence: A latent variable approach. Acta Psychologica, 134, 1628. doi:10.1016/j.actpsy. 2009.11.010 Google Scholar
Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133, 10381066. doi:10.1037/0033-2909.133.6.1038 Google Scholar
Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498505. doi:10.3758/BF03192720 CrossRefGoogle ScholarPubMed
Waris, O., Soveri, A., & Laine, M. (2015). Transfer after working memory updating training. PLOS ONE, 10, e0138734. doi:10.1371/journal.pone.0138734 Google Scholar
Was, C. A., Rawson, K. A., Bailey, H., & Dunlosky, J. (2011). Content-embedded tasks beat complex span for predicting comprehension. Behavior Research Methods, 43, 910915. doi:10.3758/s13428-011-0112-x Google Scholar
Waters, G. S., & Caplan, D. (2003). The reliability and stability of verbal working memory measures. Behavior Research Methods, Instruments, and Computers, 35, 550564. doi:10.3758/BF03195534 Google Scholar
Wells, J. B., Christiansen, M. H., Race, D. S., Acheson, D. J., & MacDonald, M. C. (2009). Experience and sentence processing: Statistical learning and relative clause comprehension. Cognitive Psychology, 58, 250271. doi:10.1016/j.cogpsych.2008.08.002 Google Scholar
Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it. Frontiers in Psychology, 4, 122. doi:10.3389/fpsyg.2013.00433 Google Scholar
Yu, Y., FitzGerald, T. H., & Friston, K. J. (2013). Working memory and anticipatory set modulate midbrain and putamen activity. Journal of Neuroscience, 33, 1404014047. doi:10.1523/jneurosci. 1176-13.2013 Google Scholar
Ziethe, A., Eysholdt, U., & Doellinger, M. (2013). Sentence repetition and digit span: Potential markers of bilingual children with suspected SLI? Logopedics Phoniatrics Vocology, 38, 110. doi:10.3109/14015439.2012.664652 Google Scholar