Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T17:36:21.017Z Has data issue: false hasContentIssue false

Hypoarticulation in infant-directed speech

Published online by Cambridge University Press:  02 November 2017

KJELLRUN T. ENGLUND*
Affiliation:
Norwegian University of Science and Technology
*
ADDRESS FOR CORRESPONDENCE Kjellrun T. Englund, Department of Psychology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway. E-mail: kjellrun.englund@ntnu.no

Abstract

An established finding in research on infant-directed speech (IDS) is that vowels are hyperarticulated compared to adult-directed speech (ADS). Studies showing this investigate point vowels, leaving us with a rather weak foundation for concluding whether IDS vowels are hyperarticulated within a particular language. The aim of this study was to investigate a large sample of vowels in IDS and to elicit speech in a natural situation for mother and infant. Acoustical and statistical analyses for /æ:, æ, ø:, ɵ, o:, ɔ, y:, y, ʉ:, ʉ, e:, ɛ/ show a selective increase in formant frequencies for some vowel qualities. In addition, vowels had higher fundamental frequency and were generally longer in IDS, but the difference between long and short vowels were comparable between IDS and ADS. With an additional front articulation and less lip protrusion in IDS compared to ADS, it is argued that IDS is hypoarticulated.

Type
Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baier, R., Idsardi, W. J., & Lidz, J. (2007). Two-month-olds are sensitive to lip rounding in dynamic and static speech events. Paper presented at the International Conference of Audio-Visual Speech Processing, Casteel, Groenendael, Hilvarenbeek, The Netherlands.Google Scholar
Benders, T. (2013). Mommy is only happy! Dutch mothers’ realisation of speech sounds in infant-directed speech expresses emotion, not didactic intent. Infant Behavior & Development, 36, 847862. doi:10.1016/j.infbeh.2013.09.001 Google Scholar
Bernstein Ratner, N. (1985). Dissociations between vowel durations and formant frequency characteristics. Journal of Speech and Hearing Research, 28, 255264.Google Scholar
Boer, B. D., & Kuhl, P. K. (2003). Investigating the role of infant-directed speech with a computer model. Acoustics Research Letters On-line, 4, 129134.Google Scholar
Boersma, P., & Weenink, D. (2009). Praat: Doing phonetics by computer (Version 5.3.69) [Computer software]. Retrieved from http://www.praat.org/ Google Scholar
Broesch, T. L., & Bryant, G. A. (2015). Prosody in infant-directed speech is similar across Western and traditional cultures. Journal of Cognition and Development, 16, 3143. doi:10.1080/15248372.2013.833923 Google Scholar
Burnham, D., Kitamura, C., & Vollmer-Conna, U. (2002). What's new pussycat? On talking to babies and animals. Science, 296, 1435.Google Scholar
Burnham, E. B., Wieland, E. A., Kondaurova, M. V., McAuley, J. D., Bergeson, T. R., & Dilley, L. C. (2015). Phonetic modification of vowel space in storybook speech to infants up to 2 years of age. Journal of Speech, Language, and Hearing Research, 58, 241253. doi:10.1044/2015_jslhr-s-13-0205 Google Scholar
Cooper, R. P., Abraham, J., Berman, S., & Staska, M. (1997). The development of infants’ preference for motherese. Infant Behavior & Development, 20, 477488. doi:10.1016/s0163- 6383(97)90037-0 Google Scholar
Cristia, A. (2013). Input to language: The phonetics and perception of infant-directed speech. Language and Linguistics Compass, 7, 157170.CrossRefGoogle Scholar
Cristia, A., & Seidl, A. (2013). The hyperarticulation hypothesis of infant-directed speech. Journal of Child Language, 41, 913934.Google Scholar
Dodane, C., & Al-Tamimi, J. (2007). An acoustic comparison of vowel systems in adult-directed speech and child-directed speech: Evidence from French, English and Japanese. Paper presented at the 16th International Congress of Phonetic Sciences, Saarbrucken, Germany.Google Scholar
Eaves, B. S., Feldman, N. H., Griffiths, T. L., & Shafto, P. (2016). Infant-directed speech is consistent with teaching. Psychological Review, 123, 758771. doi:10.1037/rev0000031 Google Scholar
Englund, K. T., & Behne, D. M. (2005). Infant directed speech in natural interaction—Norwegian vowel quantity and quality. Journal of Psycholinguistic Research, 34, 259280.Google Scholar
Englund, K., & Behne, D. (2006). Changes in infant directed speech in the first six months. Infant and Child Development, 15, 139160.Google Scholar
Fagel, S. (2010). Effects of smiling on articulation: Lips, larynx and acoustics. In Esposito, A., Campbell, N., Vogel, C., Hussain, A., & Nijholt, A. (Eds.), Lecture Notes in Computer Science: Vol. 5967. Development of multimodal interfaces: Active listing and synchrony (pp. 294303). Berlin: Springer.Google Scholar
Galle, M. E., Apfelbaum, K. S., & McMurray, B. (2015). The role of single talker acoustic variation in early word learning. Language Learning and Development, 11, 6679. doi:10.1080/15475441.2014.895249 Google Scholar
Gay, T., Ushijima, T., Hirose, H., & Cooper, F. S. (1974). Effect of speaking rate on labial consonant-vowel articulation. Journal of Phonetics, 2, 4763.Google Scholar
Green, J. R., Nip, I. S., Wilson, E. M., Mefferd, A. S., & Yunusova, Y. (2010). Lip movement exaggerations during infant-directed speech. Journal of Speech, Language, and Hearing Research, 53, 15291542.CrossRefGoogle ScholarPubMed
Hsu, H. C., Fogel, A., & Messinger, D. S. (2001). Infant non-distress vocalization during mother-infant face-to-face interaction: Factors associated with quantitative and qualitative differences. Infant Behavior & Development, 24, 107128.Google Scholar
Johnson, E. K., Lahey, M., Ernestus, M., & Cutler, A. (2013). A multimodal corpus of speech to infant and adult listeners. Journal of the Acoustical Society of America, 134, EL534–EL540. doi:10.1121/1.4828977 Google Scholar
Kent, R., & Read, C. (1992). The acoustic analysis of speech. San Diego, CA: Singular Publishing Group.Google Scholar
Kim, H. I., & Johnson, S. P. (2014). Detecting “infant-directedness” in face and voice. Developmental Science, 17, 621627.Google Scholar
Kirchhoff, K., & Schimmel, S. (2005). Statistical properties of infant-directed versus adult-directed speech: Insights from speech recognition. Journal of the Acoustical Society of America, 117, 22382246. doi:10.1121/1.1869172 Google Scholar
Kondaurova, M. V., Bergeson, T. R., & Dilley, L. C. (2012). Effects of deafness on acoustic characteristics of American English tense/lax vowels in maternal speech to infants. Journal of the Acoustical Society of America, 132, 10391049. doi:10.1121/1.4728169 Google Scholar
Kristoffersen, G. (2000). The phonology of Norwegian. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kuhl, P. K. (1993). Innate predispositions and the effects of experience in speech perception: The native language magnet theory. In Schonen, S. D., Jusczyk, P. W., McNeilage, P., & Morton, J. (Eds.), Developmental neurocognition: Speech and face processing in the first year of life (pp. 259274). New York: Kluwer Academic/Plenum Press.Google Scholar
Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina, V. L., . . . Lacerda, F. (1997). Crosslanguage analysis of phonetic units in language addressed to infants. Science, 277, 684686.Google Scholar
Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: New data and native language magnet theory expanded (NLM-e). Philosophical Transactions of the Royal Society B, 363, 9791000.Google Scholar
Lacerda, F., & Sundberg, U. (2001). Biases in early language acquisition. In Lacerda, F., Hofsten, C. V., & Heimann, M. (Eds.), Emerging cognitive abilities in early infancy. Mahwah, NJ: Erlbaum.Google Scholar
Lam, C., & Kitamura, C. (2008). “Your baby can't hear you”: How mothers talk to infants with simulated hearing loss. Unpublished manuscript.Google Scholar
Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H & H theory. In Hardcastle, W. J. & Marchal, A. (Eds.), Speech production and speech modelling (pp. 403439). New York: Kluwer.Google Scholar
Liu, H. M., Kuhl, P. K., & Tsao, F. M. (2003). An association between mothers’ speech clarity and infants’ speech discrimination skills. Developmental Science, 6, F1–F10.Google Scholar
Lively, S. E., Pisoni, D. B., Yamada, R. A., Tohkura, Y., & Yamada, T. (1994). Training Japanese listeners to identify English /r/ and /l/: Long-term retention of new phonetic categories. Journal of the Acoustical Society of America, 96, 20762087. doi:10.1121/1.410149 Google Scholar
Ma, W., Golinkoff, R. M., Houston, D. M., & Hirsh-Pasek, K. (2011). Word learning in infant- and adult-directed speech. Language Learning and Development, 7, 185201. doi:10.1080/ 15475441.2011.579839 Google Scholar
Martin, A., Schatz, T., Versteegh, M., Miyazawa, K., Mazuka, R., Dupoux, E., & Cristia, A. (2015). Mothers speak less clearly to infants than to adults: A comprehensive test of the hyperarticulation hypothesis. Psychological Science, 26, 341347. doi:10.1177/0956797614562453 Google Scholar
Martin, A., Utsugi, A., & Mazuka, R. (2014). The multidimensional nature of hyperspeech: Evidence from Japanese vowel devoicing. Cognition, 132, 216228. doi:10.1016/j.cognition.2014.04.003 Google Scholar
Masapollo, M., Polka, L., & Ménard, L. (2015). When infants talk, infants listen: Pre-babbling infants prefer listening to speech with infant vocal properties. Developmental Science. Advance online publication. doi:10.1111/desc.12298 Google Scholar
Mather, E., & Plunkett, K. (2011). Same items, different order: Effects of temporal variability on infant categorization. Cognition, 119, 438447. doi:10.1016/j.cognition.2011.02.008 Google Scholar
McMurray, B., Kovack-Lesh, K. A., Goodwin, D., & McEchron, W. (2013). Infant directed speech and the development of speech perception: Enhancing development or an unintended consequence? Cognition, 129, 362378. doi:10.1016/j.cognition.2013.07.015 Google Scholar
Ménard, L., Schwartz, J.-L., Boë, L.-J., Kandel, S., & Vallée, N. (2002). Auditory normalization of French vowels synthesized by an articulatory model simulating growth from birth to adulthood. Journal of the Acoustical Society of America, 111, 18921905. doi:10.1121/1.1459467 Google Scholar
O'Shaughnessy, D. (2000). Speech communication: Human and machine. New York: Addison-Wesley.Google Scholar
Panneton, R., Kitamura, C., Mattock, K., & Burnham, D. (2006). Slow speech enhances younger but not older infants’ perception of vocal emotion. Research in Human Development, 3, 719. doi:10.1207/s15427617rhd0301_2 Google Scholar
Rost, G. C., & McMurray, B. (2009). Speaker variability augments phonological processing in early word learning. Developmental Science, 12, 339349. doi:10.1111/j.1467-7687.2008. 00786.x Google Scholar
Sadakata, M., & McQueen, J. M. (2013). High stimulus variability in nonnative speech learning supports formation of abstract categories: Evidence from Japanese geminates. Journal of the Acoustical Society of America, 134, 13241335. doi:10.1121/1.4812767 Google Scholar
Segal, J., & Newman, R. S. (2015). Infant preferences for structural and prosodic properties of infant-directed speech in the second year of life. Infancy, 20, 339351. doi:10.1111/infa.12077 Google Scholar
Song, J. Y., Demuth, K., & Morgan, J. (2010). Effects of the acoustic properties of infant-directed speech on infant word recognition. Journal of the Acoustical Society of America, 128, 389400. doi:10.1121/1.3419786 Google Scholar
Stern, D. N., Spieker, R. K., Barnett, R. K., & MacKain, K. (1983). The prosody of maternal speech: Infant age and context related changes. Child Language, 10, 115.Google Scholar
Stevens, K. N. (1998). Acoustic phonetics. Cambridge, MA: MIT Press.Google Scholar
Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). The mel scale equates the magnitude of perceived differences in pitch at different frequencies. Journal of the Acoustical Society of America, 8, 185.Google Scholar
Stevenson, M. B., Leavitt, L. A., Roach, M. A., Chapman, R. S., & Miller, J. F. (1986). Mothers’ speech to their 1-year-old infants in home and laboratory settings. Journal of Psycholinguistic Research, 15, 451461. doi:10.1007/bf01067725 Google Scholar
Sundberg, J. (1977). The acoustics of the singing voice. Scientific American, 236, 8284.Google Scholar
Tartter, V. C. (1980). Happy talk: Perceptual and acoustic effects of smiling on speech. Perception and Psychophysics, 27, 2427.Google Scholar
Teinonen, T., Aslin, R. N., Alku, P., & Csibra, G. (2008). Visual speech contributes to phonetic learning in 6-month-old infants. Cognition, 108, 850855.Google Scholar
Ter Schure, S., Junge, C., & Boersma, P. (2016). Discriminating non-native vowels on the basis of multimodal, auditory or visual information: Effects on infants’ looking patterns and discrimination. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.00525 Google Scholar
Traunmuller, H., & Ohrstrom, N. (2007). Audiovisual perception of openness and lip rounding in front vowels. Journal of Phonetics, 35, 244258. doi:10.1016/j.wocn.2006.03.002 CrossRefGoogle Scholar
Uther, M., Knoll, M., & Burnham, D. (2007). Do you speak E-NG-L-I-SH? A comparison of foreigner- and infant-directed speech. Speech Communication, 49, 27.Google Scholar
Vallabha, G. K., McClelland, J. L., Pons, F., Werker, J. F., & Amano, S. (2007). Unsupervised learning of vowel categories from infant-directed speech. Proceedings of the National Academy of Sciences, 104, 1327313278.Google Scholar
Vanson, S. E., & Pols, L. C. W. (1990). Formant frequencies of Dutch vowels in a text, read at normal and fast rate. Journal of the Acoustical Society of America, 88, 16831693. doi:10.1121/1.400243 Google Scholar
Werker, J. F., Pons, F., Dietrich, C., Kajikawa, S., Fais, L., & Amano, S. (2007). Infant-directed speech supports phonetic category learning in English and Japanese. Cognition, 103, 147162.Google Scholar
Wong, J. W. S. (2014). The effects of high and low variability phonetic training on the perception and production of English vowels /e/-/ae/ by Cantonese ESL learners with high and low L2 proficiency levels. In Li, H. & Ching, P. (Eds.), Interspeech 2014: 15th annual conference of the International Speech Communication Association (pp. 524528). Singapore: International Speech Communication Association.CrossRefGoogle Scholar
Xu, N., Burnham, D., Kitamura, C., & Vollmer-Conna, U. (2013). Vowel hyperarticulation in parrot-, dog- and infant-directed speech. Anthrozoös, 26, 373380. doi:10.2752/175303713x13697429463592 Google Scholar