Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-18T05:31:50.426Z Has data issue: false hasContentIssue false

THE INVARIANT REGION FOR THE EQUATIONS OF NONISENTROPIC GAS DYNAMICS

Published online by Cambridge University Press:  06 March 2017

WEI-FENG JIANG*
Affiliation:
China Jiliang University, Hangzhou, China email casujiang89@cjlu.edu.cn
ZHEN WANG
Affiliation:
Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China email zhenwang@wipm.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the existence of the invariant region for the equations of nonisentropic gas dynamics. We obtain the mean-integral of the conserved quantity after making an intensive study of the Riemann problem. Using the extremum principle and the Lagrangian multiplier method, we prove that the one-dimensional equations of nonisentropic gas dynamics for an ideal gas possess a unique invariant region. However, the invariant region is not bounded.

MSC classification

Type
Research Article
Copyright
© 2017 Australian Mathematical Society 

References

Barles, G. and Souganidis, P. E., “Convergence of approximation schemes for fully nonlinear second order equations”, Asymototic. Anal. 4 (1991) 271283; doi:10.3233/ASY-1991-4305.Google Scholar
DiPerna, R. J., “Convergence of the viscosity method for isentropic gas dynamics”, Commun. Math. Phys. 91 (1983) 130; doi:10.1007/BF01206047.Google Scholar
DiPerna, R. J., “Convergence of approximate solutions to conservation laws”, Arch. Ration. Mech. Anal. 82 (1983) 2770; doi:10.1016/B978-0-12-493280-7.50018-8.Google Scholar
Ding, X. X., Chen, G. Q. and Luo, P. Z., “A supplement to the papers ‘Convergence of the Lax–Friedrichs scheme for isentropic gas dynamics’ (II)–(III)”, Acta Math. Sci. 9 (1989) 4344; https://www.researchgate.net/publication/269014104_A_supplementto_the_papers_Convergence_ of_the_Lax-Friedrichs_scheme_forisentropic_gas_dynamics_II_III.Google Scholar
Ding, X. X., Chen, G. Q. and Luo, P. Z., “Convergence of the fractional step Lax–Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics”, Commun. Math. Phys. Anal. 121 (1989) 6384; doi:10.1007/BF01218624.Google Scholar
Huang, F. and Wang, Z., “Convergence of viscosity solutions for isothermal gas dynamics”, SIAM J. Math. Anal. 34 (2002) 595610; doi:10.1007/s00205-004-0344-3.CrossRefGoogle Scholar
Lions, P. L., Perthame B, B. and Souganidis, P. E., “Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates”, Commun. Pure Appl. Math. 49 (1996) 599638; doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5.3.0.CO;2-5>CrossRefGoogle Scholar
Lions, P. L., Perthame, B. and Tadmor, E., “Kinetic formulation of the isentropic gas dynamics and p-systems’”, Commun. Math. Phys. Anal. 163 (1994) 415431; doi:10.1007/BF02102014.Google Scholar
Smoller, J., Shock waves and reaction-diffusion equations, 2nd edn (Springer, New York, 1983).Google Scholar
Tartar, L., Systems of nonlinear partial differential equations, NATO Science Series C, vol. 1 (Springer, Amsterdam, 1983) 263285.Google Scholar