Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T18:38:03.282Z Has data issue: false hasContentIssue false

ANALYSIS OF THE INEXACT UZAWA ALGORITHMS FOR NONLINEAR SADDLE-POINT PROBLEMS

Published online by Cambridge University Press:  21 October 2010

JIAN-LEI LI*
Affiliation:
School of Mathematical Sciences, University of Electronic, Science and Technology of China, Chengdu, Sichuan 611731, PR China (email: hnmaths@163.com, tingzhuhuang@126.com, plum_liliang@uestc.edu.cn)
TING-ZHU HUANG
Affiliation:
School of Mathematical Sciences, University of Electronic, Science and Technology of China, Chengdu, Sichuan 611731, PR China (email: hnmaths@163.com, tingzhuhuang@126.com, plum_liliang@uestc.edu.cn)
LIANG LI
Affiliation:
School of Mathematical Sciences, University of Electronic, Science and Technology of China, Chengdu, Sichuan 611731, PR China (email: hnmaths@163.com, tingzhuhuang@126.com, plum_liliang@uestc.edu.cn)
*
For correspondence; e-mail: hnmaths@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Inexact Uzawa algorithms for solving nonlinear saddle-point problems are proposed. A simple sufficient condition for the convergence of the inexact Uzawa algorithms is obtained. Numerical experiments show that the inexact Uzawa algorithms are convergent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2010

References

[1]Arrow, K., Hurwicz, L. and Uzawa, H., Studies in linear and nonlinear programming (Stanford University Press, Stanford, CA, 1958).Google Scholar
[2]Bacuta, C., “A unified approach for Uzawa algorithms”, SIAM J. Numer. Anal. 44 (2006) 26332649.CrossRefGoogle Scholar
[3]Bacuta, C., “Schur complements on Hilbert spaces and saddle point systems”, J. Comput. Appl. Math. 225 (2009) 581593.CrossRefGoogle Scholar
[4]Bai, Z. Z., Parlett, B. N. and Wang, Z. Q., “On generalized successive overrelaxation methods for augmented linear systems”, Numer. Math. 102 (2005) 138.CrossRefGoogle Scholar
[5]Benzi, M., Golub, G. H. and Liesen, J., “Numerical solution of saddle point problems”, Acta Numer. 14 (2005) 1137.CrossRefGoogle Scholar
[6]Bramble, J. H. and Pasciak, J. E., “A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems”, Math. Comp. 50 (1988) 117.CrossRefGoogle Scholar
[7]Bramble, J. H., Pasciak, J. E. and Vassilev, A. T., “Analysis of the inexact Uzawa algorithm for saddle point problems”, SIAM J. Numer. Anal. 34 (1997) 10721092.CrossRefGoogle Scholar
[8]Bramble, J. H., Pasciak, J. E. and Vassilev, A. T., “Uzawa type algorithms for nonsymmetric saddle point problems”, Math. Comp. 69 (1999) 667689.CrossRefGoogle Scholar
[9]Chan, K. H., Zhang, K., Zou, J. and Schubert, G., “A non-linear, 3-D spherical α 2 dynamo using a finite element method”, Phys. Earth Planetary Int. 128 (2001) 3550.CrossRefGoogle Scholar
[10]Chen, X. J., “Global and superlinear convergence of inexact Uzawa methods for saddle point problems with nondifferentiable mappings”, SIAM J. Numer. Anal. 35 (1998) 11301148.CrossRefGoogle Scholar
[11]Chen, X. J., “On preconditioned Uzawa methods and SOR methods for saddle point problems”, J. Comput. Appl. Math. 100 (1998) 207224.CrossRefGoogle Scholar
[12]Chen, Z., Du, Q. and Zou, J., “Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients”, SIAM J. Numer. Anal. 37 (2000) 15421570.CrossRefGoogle Scholar
[13]Cheng, X. L., “On the nonlinear inexact Uzawa algorithm for saddle-Point problems”, SIAM J. Numer. Anal. 37 (2000) 19301934.CrossRefGoogle Scholar
[14]Ciarlet, P. G., Introduction to numerical linear algebra and optimization (Cambridge University Press, Cambridge, 1989).CrossRefGoogle Scholar
[15]Clarke, F. H., Optimization and nonsmooth analysis (John Wiley, New York, 1983).Google Scholar
[16]Cui, M. R., “A sufficient condition for the inexact Uzawa algorithm for saddle point problems”, J. Comput. Appl. Math. 139 (2002) 189196.CrossRefGoogle Scholar
[17]Cui, M. R., “Analysis of iterative algorithms of Uzawa type for saddle point problems”, Appl. Numer. Math. 50 (2004) 133146.CrossRefGoogle Scholar
[18]Elman, H. C. and Golub, G. H., “Inexact and preconditioned Uzawa algorithms for saddle point problems”, SIAM J. Numer. Anal. 31 (1994) 16451661.CrossRefGoogle Scholar
[19]Elman, H. C. and Silvester, D. J., “Fast nonsymmetric iterations and preconditioning for Navier–Stoke equations”, SIAM J. Sci. Comput. 17 (1996) 3346.CrossRefGoogle Scholar
[20]Fletcher, R., Practical methods of optimization, 2nd edn (John Wiley, Chichester, 1987).Google Scholar
[21]Girault, V. and Raviart, P. A., Finite element methods for Navier–Stokes equations (Springer, Berlin, Heidelberg, 1986).CrossRefGoogle Scholar
[22]Golub, G. H., Wu, X. and Yuan, J. Y., “SOR-like methods for augmented systems”, BIT. Numer. Math. 41 (2001) 7185.CrossRefGoogle Scholar
[23]Hu, Q. Y. and Zou, J., “Two new variants of nonlinear inexact Uzawa algorithms for saddle point problems”, Numer. Math. 93 (2002) 333359.CrossRefGoogle Scholar
[24]Hu, Q. Y. and Zou, J., “Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle point problems”, SIAM J. Optim. 16 (2006) 798825.CrossRefGoogle Scholar
[25]Jiang, H. and Qi, L., “Local uniqueness and Newton-type methods for nonsmooth variational inequalities”, J. Math. Anal. Appl. 196 (1996) 314331.CrossRefGoogle Scholar
[26]Kelley, C. T., Iterative methods for linear and nonlinear equations (SIAM, Philadelphia, 1995).CrossRefGoogle Scholar
[27]McCormick, S., “Multigrid methods for variational problems: general theory for the V-cycle”, SIAM J. Numer. Anal. 22 (1985) 634643.CrossRefGoogle Scholar
[28]Qi, L. and Sun, J., “A nonsmooth version of Newton’s method”, Math. Program. 58 (1993) 353368.CrossRefGoogle Scholar
[29]Queck, W., “The convergence factor of preconditioned algorithms of the Arrow–Hurwicz type”, SIAM J. Numer. Anal. 26 (1989) 10161030.CrossRefGoogle Scholar
[30]Rusten, T. and Winther, R., “A preconditioned iterative method for saddlepoint problems”, SIAM J. Matrix Anal. Appl. 13 (1992) 887904.CrossRefGoogle Scholar
[31]Saad, Y. and Schultz, M. H., “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Comput. 7 (1986) 856869.CrossRefGoogle Scholar
[32]Silvester, D. J. and Wathen, A. J., “Fast iterative solution of stabilized Stokes systems part II: using general block preconditioners”, SIAM J. Numer. Anal. 31 (1994) 13521367.CrossRefGoogle Scholar
[33]Tseng, P., “Applications of a splitting algorithm to decomposition in convex programming and variational inequalities”, SIAM J. Control Optim. 29 (1991) 119138.CrossRefGoogle Scholar
[34]Wathen, A. J. and Silvester, D. J., “Fast iterative solution of stabilized Stokes systems part I: using simple diagonal preconditioners”, SIAM J. Numer. Anal. 30 (1993) 630649.CrossRefGoogle Scholar